Self-Assembly: Reshaping Mission Design

It’s interesting to contemplate the kind of missions we could fly if we develop lightweight smallsats coupled with solar sails, deploying them in Sundiver maneuvers to boost their acceleration. Getting past Voyager 1’s 17.1 kilometers per second would itself be a headline accomplishment, demonstrating the feasibility of this kind of maneuver for boosting delta-v as the spacecraft closes to perhaps 0.2 AU of the Sun before adjusting sail attitude to get maximum acceleration from solar photons. The economic case for smallsats and sails is apparent. Consider The Planetary Society’s LightSail-2, a solar sail in low Earth orbit, which demonstrated its ability to operate and change its orbit in space for multiple years before reentering Earth's atmosphere in November of 2022. Launched in 2018, LightSail-2 cost $7 million. NASA’s Solar Cruiser, a much larger design still in development despite budging hiccups, weighs in at $65 million. Slava Turyshev and team at the Jet Propulsion...

read more

AI Colonization: The Founder and the Ambassador

As we look toward future space missions using advanced artificial intelligence, when can we expect to have probes with cognitive capabilities similar to humans? Andreas Hein and Stephen Baxter consider the issue in their paper “Artificial Intelligence for Interstellar Travel” (citation below), working out mass estimates for the spacecraft and its subsystems and applying assumptions about the increase in computer power per payload mass. By 2050 we reach onboard data handling systems with a processing power of 15 million DMIPS per kg. As DMIPS and flops are different performance measures [the computing power of the human brain is estimated at 1020 flops], we use a value for flops per kg from an existing supercomputer (MareNostrum) and extrapolate this value (0.025?1012 flops/kg) into the future (2050). By 2050, we assume an improvement of computational power by a factor 105 , which yields 0.025?1017 flops/kg. In order to achieve 1020 flops, a mass of dozens to a hundred tons is needed....

read more

Future AI: The Explorer and the Philosopher

Robert Bradbury had interesting thoughts about how humans would one day travel to the stars, although whether we could at this point call them human remains a moot point. Bradbury, who died in 2011 at the age of 54, reacted at one point to an article I wrote about Ben Finney and Eric Jones’ book Interstellar Migration and the Human Experience (1985). In a comment to that post, the theorist on SETI and artificial intelligence wrote this: Statements such as “Finney believes that the early pioneers … will have so thoroughly adapted to the space environment” make sense only once you realize that the only “thoroughly adapted” pioneers will be pure information (i.e. artificial intelligences or mind uploaded humans) because only they can have sufficient redundancy that they will be able to tolerate the hazards that space imposes and exist there with minimal costs in terms of matter and energy. Note Bradbury’s reference to the hazards of space, and the reasonable supposition -- or at least...

read more

Artificial Intelligence and the Starship

The imperative of developing artificial intelligence (AI) could not be more clear when it comes to exploring space beyond the Solar System. Even today, when working with unmanned probes like New Horizons and the Voyagers that preceded it, we are dealing with long communication times, making probes that can adapt to situations without assistance from controllers a necessity. Increasing autonomy promises challenges of its own, but given the length of the journeys involved, earlier interstellar efforts will almost certainly be unmanned and rely on AI. The field has been rife with speculation by science fiction writers as well as scientists thinking about future missions. When the British Interplanetary Society set about putting together the first serious design for an interstellar vehicle -- Project Daedalus in the 1970s -- self-repair and autonomous operation were a given. The mission would operate far from home, performing a flyby of Barnard's Star and the presumed planets there with...

read more

A Vision to Bootstrap the Solar System Economy

Early probes are one thing, but can we build a continuing presence among the stars, human or robotic? An evolutionary treatment of starflight sees it growing from a steadily expanding presence right here in our Solar System, the kind of infrastructure Alex Tolley examines in the essay below. How we get to a system-wide infrastructure is the challenge, one analyzed by a paper that sees artificial intelligence and 3D printing as key drivers leading to a rapidly expanding space economy. The subject is a natural for Tolley, who is co-author (with Brian McConnell) of A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2016). An ingenious solution to cheap transportation among the planets, the Spacecoach could readily be part of the equation as we bring assets available off-planet into our economy and deploy them for even deeper explorations. Alex is a lecturer in biology at the University of California, and has been a Centauri Dreams regular for as long as I...

read more

Interstellar Journey: Shrinking the Probe

We've all imagined huge starships jammed with human crews, inspired by many a science fiction novel or movie. But a number of trends point in a different direction. As we look at what it would take to get even a robotic payload to another star, we confront the fact that tens of thousands of tons of spacecraft can deliver only the smallest of payloads. Lowering the mass requirement by miniaturizing and leaving propellant behind looks like a powerful option. Centauri Dreams regular Alex Tolley pointed to this trend in relation to The Planetary Society's LightSail-1 project. In a scant ten years, we have gone from the earlier Cosmos 1 sail with an area of 600 square meters to LightSail-1, with 32 square meters, but at no significant cost in scientific return because of continuing miniaturization of sensors and components. We can translate that readily into interstellar terms by thinking about future miniature craft that can be sent out swarm-style to reach their targets. Significant...

read more

Thoughts on a Spacecraft’s Rebirth

According to a recent NASA news release, the agency has never before signed the kind of agreement it has made with Skycorp, Inc., a Los Gatos, CA-based firm that will now attempt contact with the International Sun-Earth Explorer-3 (ISEE-3) spacecraft. You'll recall that this is the vehicle that scientists and space activists alike have been talking about resurrecting now that, having completed its studies of the solar wind in 1981 and later comet observations, it is making its closest approach to the Earth in more than thirty years (see ISEE-3: The Challenge of the Long Duration Flight). According to its website, Skycorp is in the business of bringing "...new technologies, new approaches, and reduced cost to the manufacture of spacecraft and space systems." Founded in 1998, the company signed a Space Act Agreement with NASA for the use of the International Space Station in 1999, and qualified the first commercial payload used in the filming of a television commercial (for Radio...

read more

Small Payloads to the Stars

Making things smaller seems more and more to be a key to feasibility for long-haul spaceflight. Recently I went through solar sail ideas from the 1950s as the concept made its way into the scientific journals after an interesting debut to the public in Astounding Science Fiction. We also discussed Sundiver missions taking advantage of a huge 'slingshot' effect as a sail skims the photosphere. These could yield high speeds if we can solve the materials problem, but the other issue is making the payload light enough to get maximum benefit from the maneuver. It puzzles me that in an age of rapid miniaturization and increasing interest in the technologies of the very small, we tend to be locked into an older paradigm for starships, that they must be enormous structures to maintain a crew and carry out their scientific mission. Alan Mole's recent paper reminds us of an alternative flow of work beginning in the 1980s that suggests a far more creative approach. If we're going to...

read more

Keeping the Probe Alive

Talking about issues of long-term maintenance and repair, as we have been for the past two days, raises the question of what we mean by 'self-healing.' As some commenters have noted, the recent Caltech work on computer chips that can recover from damage isn't really healing at all. Caltech's researchers zap the chip with a laser, but there is no frantic nanobot repair activity that follows. What happens instead is that sensors on the chip detect the drop in performance and go to work to route around the damage so the system as a whole can keep performing. So the analogy with biological systems is far-fetched, and we might think instead of Internet traffic routing around localized disruptions. It's still tremendously useful because CMOS (complementary metal-oxide-semiconductor) chips can start acting flaky depending on factors like temperature and power variations. Problems deep inside a chip generally force us to replace an entire piece of equipment -- think cell phones -- whereas a...

read more

Autonomy and the Interstellar Probe

Yesterday's thoughts on self-repairing chips, as demonstrated by recent work at Caltech, inevitably called Project Daedalus to mind. The span between the creation of the Daedalus design in the 1970s and today covers the development of the personal computer and the emergence of global networking, so it's understandable that the way we view autonomy has changed. Self-repair is also a reminder that a re-design like Project Icarus is a good way to move the ball forward. Imagine a series of design iterations each about 35 years apart, each upgrading the original with current technology, until a working craft is feasible. My copy of the Project Daedalus Final Report is spread all over my desk this morning, the result of a marathon copying session at a nearby university library many years ago. These days you can skip the copy machine and buy directly from the British Interplanetary Society, where a new edition that includes a post-project review by Alan Bond and Tony Martin is available....

read more

Self-Healing Circuits for Deep Space

Computer failures can happen any time, but it's been so long since I've had a hard disk failure that I rarely worry about such problems. Part of my relaxed stance has to do with backups, which I always keep in triplicate, so when I discovered Friday afternoon that one of my hard disks had failed -- quickly and catastrophically -- it was more of a nuisance than anything else. It meant taking out the old disk, going out to buy a new one and installing same, and then loading an operating system on it. Because I do 90 percent of my work in Linux, I opted for Linux Mint as a change of pace from Ubuntu, making it the tenth version of Linux I've used over the years. My weekend was mildly affected, but the new disk went in swiftly and the operating system load went without incident, so I was still able to get to two concerts, one of them an absolutely brilliant handling of Elgar's 'Enigma Variations,' and to see the new Tommy Lee Jones movie 'Emperor.' Hardware failures in the midst of an...

read more

Data Storage: The DNA Option

One of the benefits of constantly proliferating information is that we're getting better and better at storing lots of stuff in small spaces. I love the fact that when I travel, I can carry hundreds of books with me on my Kindle, and to those who say you can only read one book at a time, I respond that I like the choice of books always at hand, and the ability to keep key reference sources in my briefcase. Try lugging Webster's 3rd New International Dictionary around with you and you'll see why putting it on a Palm III was so delightful about a decade ago. There is, alas, no Kindle or Nook version. Did I say information was proliferating? Dave Turek, a designer of supercomputers for IBM (world chess champion Deep Blue is among his creations) wrote last May that from the beginning of recorded time until 2003, humans had created five billion gigabytes of information (five exabytes). In 2011, that amount of information was being created every two days. Turek's article says that by 2013,...

read more

Robotics: Pushing the Envelope

"My increasingly sophisticated laptops are starting to develop personalities of their own," says Charles Lineweaver (Australian National University), as interviewed by Peter Spinks in The Age. It's a whimsical remark in the context of a discussion on robotics in space missions, but I think many of us can relate to it. We all tend to anthropomorphize at the drop of a hat, reading motives and reactions into the routine habits of our pets that may say more about us than about them. Maybe making things seem human is an essential part of what being human is. It's worth thinking about all this given the successes as well as the limitations of robotic technologies. I'm all in favor of both robotics and a robust manned program, but right now deep space is a machine's game, and budget realities tell me it will remain so for the foreseeable future. That being the case, and again, with our tendency to anthropomorphize our machinery, there was a certain frisson associated with Curiosity's...

read more

Remembering the Early Robotic Explorers

Reflecting back on the history of robotic space missions, Larry Klaes offers a look at the early missions to Venus and Mars, harbingers of the far more complex probes we would later send into the Solar System. The Pioneers, Veneras and Mariners were, in their day, on the forefront of planetary research, blazing the trail most recently followed by Curiosity on Mars. As a site focused on deep space issues, we often return to Voyager and Pioneer, but let's not forget how planetary exploration got its start. By Larry Klaes Once upon a time, our Solar System was a very lively place. In past centuries, most if not all of the known planets and their moons, along with the even smaller members of our celestial neighborhood, were imagined to have native life forms as numerous and diverse as those found on Earth. Otherwise, it seemed pointless for whole worlds to exist without any inhabitants. Then along came the Twentieth Century. Improved knowledge about the Sol system caused the majority of...

read more

Robotics: Anticipating Asimov

My friend David Warlick and I were having a conversation yesterday about what educators should be doing to anticipate the technological changes ahead. Dave is a specialist in using technology in the classroom and lectures all over the world on the subject. I found myself saying that as we moved into a time of increasingly intelligent robotics, we should be emphasizing many of the same things we'd like our children to know as they raise their own families. Because a strong background in ethics, philosophy and moral responsibility is something they will have to bring to their children, and these are the same values we'll want to instill into artificial intelligence. The conversation invariably summoned up Asimov's Three Laws of Robotics, first discussed in a 1942 science fiction story ('Runaround,' in Astounding Science Fiction's March issue) but becoming the basic principles of all his stories about robots. In case you're having trouble remembering them, here are the Three Laws: A...

read more

A Machine-Driven Way to the Stars

Are humans ever likely to go to the stars? The answer may well be yes, but probably not if we're referring to flesh-and-blood humans aboard a starship. That's the intriguing conclusion of Keith Wiley (University of Washington), who brings his background in very large computing clusters and massively parallel image data processing to bear on the fundamental question of how technologies evolve. Wiley thinks artificial intelligence (he calls it 'artificial general intelligence,' or AGI) and mind-uploading (MU) will emerge before other interstellar technologies, thus disrupting the entire notion of sending humans and leading us to send machine surrogates instead. It's a notion we've kicked around in these pages before, but Wiley's take on it in Implications of Computerized Intelligence on Interstellar Travel is fascinating because of the way he looks at the historical development of various technologies. To do this, he has to assume there is a correct 'order of arrival' for technologies,...

read more

Artificial Intelligence Among the Stars

Talk of a 'singularity' in which artificial intelligence reaches such levels that it moves beyond human capability and comprehension plays inevitably into the realm of interstellar studies. Some have speculated, as Paul Davies does in The Eerie Silence, that any civilization we make contact with will likely be made up of intelligent machines, the natural development of computer technology's evolution. But even without a singularity, it's clear that artificial intelligence will have to play an increasing role in space exploration. If we develop the propulsion technologies to get an interstellar probe off to Alpha Centauri, we'll need an intelligence onboard that can continue to function for the duration of the journey, which could last centuries, or at the very least decades. Not only that, the onboard AI will have to make necessary repairs, perform essential tasks like navigation, conduct observations and scientific studies and plan and execute arrival into the destination system....

read more

Growing the Interstellar Probe

Centauri Dreams reader Brian Koester passed along a link to a provocative video last month that spurs thoughts about the nature of interstellar probes. The video is a TED talk delivered by Paul Rothemund in 2007. For those not familiar with it, TED stands for Technology, Entertainment, Design, a conference that began in 1984 and now brings together interesting scientific figures whose challenge is to give the best talk they can on their specialty within the span of eighteen minutes. I've been pondering Rothemund's talk for some time. You can call this Caltech bioengineer a 'DNA origamist,' meaning that he is exploring ways to fold DNA into shapes and patterns. As becomes clear in his presentation, folding DNA into 'smiley' faces or maps has a certain wow factor, but once you get past the initial wonder of working at this level, you begin to appreciate how research in DNA nanotechnology points toward self-assembling devices that can be built at the micro-scale. Molecular Computing to...

read more

New Earths: A Crossroads Moment

A symposium called Crossroads: The Future of Human Life in the Universe seems timely about now (the site has been down all morning but should be up soon). With the Kepler mission undergoing calibration and CoRoT actively searching for small extrasolar worlds, we're probably within a few dozen months of the detection of an Earth-like world around another star (and maybe, by other methods, much closer). This is sometimes referred to as the 'Holy Grail' of planetary sciences, but as soon as we accomplish it, a new 'Grail' emerges: The discovery of life on these worlds. And then another: Finding intelligent life. We can kick the Fermi Paradox around all day, and enjoyably so because it forces us to use our imaginations, but ultimately we hope to put together the hard data that will tell us which of our speculations is most accurate. I see that the Crossroads symposium, which will take place May 1-2 as part of the Cambridge Science Festival, will include Frank Drake's re-examination of...

read more

Mulling Robots and Their Names

Lee Gutkind takes a look at the Robotics Institute at Carnegie Mellon in Almost Human: Making Robots Think (W.W. Norton, 2007), a book entertainingly reviewed in this weekend's Los Angeles Times. Out of which this wonderful clip from reviewer M.G. Lord: I wish Gutkind had spent more time on an area that I find fascinating: the anthropomorphizing and gendering of robots, which science-fiction author Robert A. Heinlein famously explored in his novel The Moon Is a Harsh Mistress. What Heinlein created was a computer that, depending on circumstances, could switch between masculine and feminine identities. Robots are heaps of hardware, not biological entities, yet humans apparently feel more comfortable if they assign them a gender, regardless of the crudeness of the gender stereotype. The institute, for example, has robot receptionists with gendered personalities: Valerie, a "female" who complains about her dates with vacuum cleaners and cars, and Tank, a "male," who has blundered so...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives