Every now and then I run into a paper that opens up an entirely new perspective on basic aspects of space exploration. When I say ‘new’ I mean new to me, as in the case of today’s paper, the relevant work has been ongoing ever since we began lofting payloads into space. But an aspect of our explorations that hadn’t occurred to me was the obvious question of how we coordinate time between Earth’s surface and craft as distant as Voyager, or moving as close to massive objects as Cassini. We are in the realm of ‘time transformations,’ and they’re critical to the operation of our probes. Somehow considering all this in an interstellar sense was always much easier for me. After all, if we get to the point where we can push a payload up to relativistic speeds, the phenomenon of time dilation is well known and entertainingly depicted in science fiction all the way back to the 1930s. But I remember reading a paper from Roman Kezerashvili (New York City College of Technology) that analyzed the...
Medusa: Deep Space via Nuclear Pulse
The propulsion technology the human characters conceive in the Netflix version of Liu Cixin’s novel The Three Body Problem clearly has roots in the ideas we’ve been kicking around lately. I should clarify that I’m talking about the American version of the novel, which Netflix titles ‘3 Body Problem,’ and not the Chinese 30-part series, which is also becoming available. In the last two posts, I’ve gone through various runway concepts, in which a spacecraft is driven forward by nuclear explosions along its route of flight. We’ve also looked at pellet options, where macroscopic pellets are fired to a departing starship to impart momentum and/or to serve as fusion fuel. All this gets us around the problem of carrying propellant, and thus offers real benefits in terms of payload capabilities. Even so, it was startling to hear the name Stanislaw Ulam come up on a streaming TV series. Somebody was doing their homework, as Freeman Dyson liked to say. Ulam’s name will always be associated...
Fusion Pellets and the ‘Bussard Buzz Bomb’
Fusion runways remind me of the propulsion methods using pellets that have been suggested over the years in the literature. Before the runway concept emerged, the idea of firing pellets at a departing spacecraft was developed by Clifford Singer. Aware of the limitations of chemical propulsion, Singer first studied charged particle beams but quickly realized that the spread of the beam as it travels bedevils the concept. A stream of macro-pellets, each several grams in size, would offer a better collimated ‘beam’ that would vaporize to create a hot plasma thrust when it reaches the spacecraft. Even a macro-pellet stream does ‘bloom’ over time – i.e., it loses its tight coherency because of collisions with interstellar dust grains – but Singer was able to show through papers in The Journal of the British Interplanetary Society that particles over one gram in weight would be sufficiently massive to minimize this. In any case, collimation could also be ensured by electromagnetic fields...
The Interstellar Fusion Runway Evolves
Let’s talk about how to get a spacecraft moving without onboard propellant. As noted last week, this is apropos of the design shown in the Netflix streaming video take on Liu Cixin’s novels, which the network titles ‘3 Body Problem.’ There, a kind of ‘runway’ is conceived, one made up of nuclear weapons that go off in sequence to propel a sail and its payload. The plan is to attain 0.012 c and reach an oncoming fleet that is headed to Earth but will not arrive for another four centuries. This is an intriguing notion, and one with echoes in the interstellar literature. Because Johndale Solem mixed sails and nuclear weapons in a design called ‘Medusa’ that he described in a Los Alamos report back in 1991, although its roots go back decades earlier, as I’ll discuss in an upcoming article. Mixing sails, nuclear weapons and a fusion runway is an unusual take, a hybrid concept that caught my eye immediately, as it did that of Al Jackson, who alluded to runways in a paper in the 1970s. I’ve...
Interstellar Propulsion in ‘3 Body Problem’
You never know when a new interstellar propulsion concept is going to pop up. Some of us have been kicking around fusion runway ideas, motivated by Netflix’s streaming presentation of the Liu Cixin novel The Three Body Problem. There Earth is faced with invasion from an extraterrestrial civilization, but with centuries to solve the problem because it will take that long for the fleet to arrive. Faced with the need to get as much information as possible about the invaders, scientists desperately search for a way to get human technology up to 1.2 percent of lightspeed to intercept the fleet. Image: 20 different examples of periodic solutions to the three body problem. Credit: Perosello/Wikimedia Commons. CC BY-SA 4.0. So how would you do that with technology not much more advanced than today’s? The Netflix show’s solution is ingenious, though confusing for those who assume that the Netflix ‘3 Body Problem’ is based solely on the first of the Cixin novels. Actually it edges into the...
An Alternative Take on Fusion Fuel
Let’s talk about fusion fuels in relation to the recent discussion of building a spacecraft engine. A direct fusion drive (DFD) system using magnetic mirror technologies is, as we saw last time, being investigated at the University of Maryland in its Centrifugal Mirror Fusion Experiment (CMFX), as an offshoot of the effort to produce fusion for terrestrial purposes. The initial concept being developed at CMFX is to introduce a radial electric field into the magnetic mirror system. This enhances centrifugal confinement of the plasma in a system using deuterium and tritium as fusion fuel. Out of this we get power but not thrust. However, both UMD’s Jerry Carson and colleague Tom Bone told the Interstellar Research Group’s Montreal gathering that such a reactor coupled with a reservoir of warm plasma offers prospects for in-space propulsion. Alpha particles (these are helium nuclei produced in the fusion reaction) may stay in the reactor, further energizing the fuel, or they can move...
A Fusion Drive Using Centrifugal Mirror Technologies
I want to drop back to fusion propulsion at this point, as it bears upon the question of a Solar System-wide infrastructure that we looked at last time. We know that even chemical propulsion is sufficient to get to Mars, but clearly, reducing travel times is critical if for no other reason than crew health. That likely puts the nuclear thermal concept into play, as we have experience in the development of the technology as far back as NERVA (Nuclear Engine for Rocket Vehicle Application), and this fission-based method shows clear advantages over chemical means in terms of travel times. It’s equally clear, though, that for missions deep into the Solar System and beyond, the high specific impulse (ISP) enabled by a theoretical direct fusion drive sets the standard we’d like to meet. In his presentation at the Interstellar Research Group’s Montreal symposium, Jerry Carson discussed the ongoing work at the University of Maryland on creating fusion conditions using deuterium/deuterium...
Interstellar Path? Helicity’s Bid for In-Space Fusion
Be aware that the Interstellar Research Group has made the videos shot at its Montreal symposium available. I find this a marvelous resource, and hope I never get jaded with the availability of such materials. I can remember hunting desperately for background on talks being given at astronomical conferences I could not attend, and this was just 20 years ago. Now the growing abundance of video makes it possible for those of us who couldn’t be in Montreal to virtually attend the sessions. Nice work by the IRG video team! There is plentiful material here for the interstellar minded, and I will be drawing on this resource in days ahead. But let’s start with fusion, because it’s a word that all too easily evokes a particular reaction in those of us who have been writing about the field for some time. Fusion has always seemed to be the flower about to bloom, even as decades of research have passed and the target of practical power generation hovers in the future. In terms of propulsion,...
Ion Propulsion for the Nearby Interstellar Medium
When scientists began seriously looking at beaming concepts for interstellar missions, sails were the primary focus. The obvious advantage was that a large sail need carry no propellant. Here I'm thinking about the early work on laser beaming by Robert Forward, and shortly thereafter George Marx. Forward's first published work on laser sails came during his tenure at Hughes Aircraft Company, having begun as an internal memo within the firm, and later appearing in Missiles and Rockets. Theodore Maiman was working on lasers at Hughes Research Laboratories back then, and the concept of wedding laser beaming with a sail fired Forward's imagination. The rest is history, and we've looked at many of Forward's sail concepts over the years on Centauri Dreams. But notice how beaming weaves its way through the scientific literature on interstellar flight, later being applied in situations that wed it with technologies other than sails. Thus Al Jackson and Daniel Whitmire, who in 1977 considered...
Ion Propulsion: The Stuhlinger Factor
How helpful can electric propulsion become as we plan missions into the local interstellar medium? We can think about this in terms of the Voyager probes, which remain our only operational craft beyond the heliosphere. Voyager 1 moved beyond the heliopause in 2012, which means 35 years between launch and heliosphere exit. But as Nadim Maraqten (Universität Stuttgart) noted in a presentation at the recent International Astronautical Congress, reaching truly unperturbed interstellar space involves getting to 200 AU. We'd like to move faster than Voyager, but how? Working with Angelo Genovese (Initiative for Interstellar Studies), Maraqten offers up a useful analysis of electric propulsion, calling it one of the most promising existing propulsion technologies, along with various sail concepts. In fact, the two modes have been coupled in some recent studies, about which more as we proceed. The authors believe that the specific impulse of an EP spacecraft must exceed 5000 seconds to make...
Getting There Quickly: The Nuclear Option
Adam Crowl has been appearing on Centauri Dreams for almost as long as the site has been in existence, a welcome addition given his polymathic interests and ability to cut to the heart of any issue. His long-term interest in interstellar propulsion has recently been piqued by the Jet Propulsion Laboratory's work on a mission to the Sun's gravitational lens region. JPL is homing in on multiple sailcraft with close solar passes to expedite the cruise time, leading Adam to run through the options to illustrate the issues involved in so dramatic a mission. Today he looks at the pros and cons of nuclear propulsion, asking whether it could be used to shorten the trip dramatically. Beamed sail and laser-powered ion drive possibilities are slated for future posts. With each of these, if we want to get out past 550 AU as quickly as possible, the devil is in the details. To keep up with Adam's work, keep an eye on Crowlspace. by Adam Crowl The Solar Gravitational Lens amplifies signals from...
Laser Thermal Propulsion for Rapid Transit to Mars: Part 1
Do the laser thermal concepts we discussed earlier this week have an interstellar future? To find out, applications closer to home will have to be tested and deployed as the technology evolves. Today we look at the work of Andrew Higgins and team at McGill University (Montreal), whose concept of a Mars mission using these methods is much in the news. Dr. Higgins is a professor of Mechanical Engineering at the university, where he teaches courses in the discipline of thermofluids. He has 30 years of experience in shock wave experimentation and modeling, with applications to advanced aerospace propulsion and fusion energy. His background includes a PhD ('96) and MS ('93) in Aeronautics and Astronautics from the University of Washington, Seattle, and a BS ('91) in Aeronautical and Astronautical Engineering from the University of Illinois in Urbana/Champaign. Today's article is the first of two. by Andrew Higgins Directed energy propulsion continues to be the most plausible, near-term...
Notes on the Magnetic Ramjet II
Building a Bussard ramjet isn't easy, but the idea has a life of its own and continues to be discussed in the technical literature, in addition to its long history in science fiction. Peter Schattschneider, who explored the concept in Crafting the Bussard Ramjet last February, has just published an SF novel of his own called The EXODUS Incident (Springer, 2021), where the Bussard concept plays a key role. But given the huge technical problems of such a craft, can one ever be engineered? In this second part of his analysis, Dr. Schattschneider digs into the question of hydrogen harvesting and the magnetic fields the ramjet would demand. The little known work of John Ford Fishback offers a unique approach, one that the author has recently explored with Centauri Dreams regular A. A. Jackson in a paper for Acta Astronautica. The essay below explains Fishback's ideas and the options they offer in the analysis of this extraordinary propulsion concept. The author is professor emeritus in...
Crafting the Bussard Ramjet
The Bussard ramjet is an idea whose attractions do not fade, especially given stunning science fiction treatments like Poul Anderson’s novel Tau Zero. Not long ago I heard from Peter Schattschneider, a physicist and writer who has been exploring the Bussard concept in a soon to be published novel. In the article below, Dr. Schattschneider explains the complications involved in designing a realistic ramjet for his novel, with an interesting nod to a follow-up piece I’ll publish as soon as it is available on the work of John Ford Fishback, whose ideas on magnetic field configurations we have discussed in these pages before. The author is professor emeritus in solid state physics at Technische Universität Wien, but he has also worked for a private engineering company as well as the French CNRS, and has been director of the Vienna University Service Center for Electron Microscopy. With more than 300 research articles in peer-reviewed journals and several monographs on electron-matter...
Magnetic Reconnection in New Thruster Concept
At the Princeton Plasma Physics Laboratory (PPPL) in Plainsboro, New Jersey, physicist Fatima Ebrahimi has been exploring a plasma thruster that, on paper at least, appears to offer significant advantages over the kind of ion thruster engines now widely used in space missions. As opposed to electric propulsion methods, which draw a current of ions from a plasma source and accelerate it using high voltage grids, a plasma thruster generates currents and potentials within the plasma itself, thus harnessing magnetic fields to accelerate the plasma ions. What Ebrahimi has in mind is to use magnetic reconnection, a process observed on the surface of the Sun (and also occurring in fusion tokamaks), to accelerate the particles to high speeds. The physicist found inspiration for the idea in PPPL's ongoing work in fusion. Says Ebrahimi: "I've been cooking this concept for a while. I had the idea in 2017 while sitting on a deck and thinking about the similarities between a car's exhaust and the...
Propulsion for Satellite ‘Constellations’
A French company called Exotrail has been working on electric propulsion systems for small spacecraft down to the CubeSat level. As presented last week at the 13th European Space Conference in Brussels, the ExoMG Hall-effect electric propulsion system was flown in a demonstration orbital mission in November, launched to low-Earth orbit by a PSLV (Polar Satellite Launch Vehicle) rocket. A brief nod to the PSLV: These launch vehicles were developed by the Indian Space Research Organisation (ISRO), and are being used for rideshare launch services for small satellites. Among their most notable payloads have been the Indian lunar probe Chandrayaan-1, and the Mars Orbiter Mission called Mangalyaan. Hall-effect thrusters (HET) trap electrons emitted by a cathode in a magnetic field, ionizing a propellant to create a plasma that can be accelerated via an electric field. The technology has been in use in large satellites for many years because of its high thrust-to-power ratio. What catches...
Musings on Fusion and the Interstellar Ramjet
Proton-proton fusion produces 99 percent of the Sun's energy, in a process that begins with two hydrogen nuclei and ends with one helium nucleus, releasing energy along the way. We'd love to exploit the fusion process to create energy for our own directed uses, which is what Robert Bussard was thinking about with his interstellar ramjet when he published the idea in 1960. Such a ship might deploy electromagnetic fields thousands of kilometers in diameter to scoop up atoms from the interstellar medium, using them as reaction mass for the fusion that would drive it. Carl Sagan was a great enthusiast for the concept, and would describe it vividly in the book he wrote with Russian astronomer and astrophysicist Iosif S. Shklovskii. In Intelligent Life in the Universe (1966), the authors discuss a journey that takes advantage of time dilation, allowing a lightspeed-hugging starship powered by these methods to reach galactic center in a mere 21 years of ship-time; i.e., time as perceived by...
The Interstellar Ramjet at 60
The interstellar ramjet conceived by Robert Bussard may have launched more physics careers than any other propulsion concept. Numerous scientists over the years have told me how captivated they were with Poul Anderson's treatment of the idea in his novel Tau Zero. Al Jackson takes a look at Bussard's concept in today's essay, referencing its subsequent treatment in the literature and adding a few anecdotes about Bussard himself. The original paper was submitted on February 1, 1960 to Astronautica Acta, then edited by Theodore von Kármán (a 'tough judge,' Al notes) and published later that spring. Although the ramjet faces numerous engineering issues, its ability to resolve the mass-ratio problem in interstellar flight makes it certain to receive continued scrutiny. by A. A. Jackson Writers of science fiction prose noticed the difference between interplanetary flight and interstellar flight earlier than anyone. Various fictional methods of faster-than-light (FTL) were invented in the...
Introducing the Q-Drive: A concept that offers the possibility of interstellar flight
If Breakthrough Starshot is tackling the question of velocities at a substantial percentage of lightspeed, what do we do about the payload question? A chip-sized spacecraft is challenging in terms of instrumentation and communications, not to mention power. Enter Jeff Greason's Q-Drive, with an entirely different take on high velocity missions within the Solar System and beyond it. Drawing its energies from the medium to deploy an inert propellant, the Q-Drive ups the payload enormously. But can it be engineered? Alex Tolley has been doing a deep dive on the concept and talking to Dr. Greason about the possibilities, out of which today's essay has emerged. A Centauri Dreams regular, Alex has a history of innovative propulsion work, and with Brian McConnell is co-author of A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2016), by Alex Tolley Technical University of Munich for Project Icarus. Credit: Adrian Mann. The interstellar probe coasted at 4% c...
Black Hole Propulsion as Technosignature
When he was considering white dwarfs and neutron stars in the context of what he called 'gravitational machines,' Freeman Dyson became intrigued by the fate of a neutron star binary. He calculated in his paper of the same name (citation below) that gradual loss of energy through gravitational radiation would bring the two neutron stars together, creating a gravitational wave event of the sort that has since been observed. Long before LIGO, Dyson was talking about gravitational wave detection instruments that could track the 'gravitational flash.' Image: Artist conception of the moment two neutron stars collide. Credit: LIGO / Caltech / MIT. Observables of this kind, if we could figure out how to do it (and we subsequently have) fascinated Dyson, who was in this era (early 1960s) working out his ideas on Dyson spheres and the capabilities of advanced civilizations. As to the problematic merger of neutron stars in a 'machine,' he naturally wondered whether astrophysical evidence of...