Spotting transiting planets is what missions like CoRoT and Kepler are all about. The next step, getting a read on what’s in the atmosphere of any transiting, terrestrial world, is going to be tricky. The biomarkers like ozone and methane, so crucial for determining whether there’s life on a distant planet, are beyond the range of existing spacecraft. But the the next generation James Webb Space Telescope is also in the works, scheduled for launch in 2013.

jwst_planet_study

For nearby Earth-class worlds, JWST may be up to the task, at least for terrestrial planets that transit. In fact, if Alpha Centauri A turns out to have a transiting Earth-like planet (a major if!), it would take only a few transits to study the light filtering through its atmosphere to look for signs of life. Alpha Centauri is problematic in any case, but a recent study shows that the method — breaking down the star’s light during a transit to look for the characteristic markers — could be extended to other stars, provided enough transits can be measured.

Image: This artist’s conception shows a hypothetical twin Earth orbiting a Sun-like star. A new study shows that characterizing a distant Earth’s atmosphere will be difficult, even using next-generation technology like the James Webb Space Telescope. If an Earth-like world is nearby, though, then by adding observations of a number of transits, astronomers should be able to detect biomarkers like methane or ozone. Credit: David A. Aguilar (CfA).

Lisa Kaltenegger (Harvard-Smithsonian Center for Astrophysics) and Wesley Traub (Jet Propulsion Laboratory) have been studying JWST in this context. Says Kaltenegger:

“We’ll have to be really lucky to decipher an Earth-like planet’s atmosphere during a transit event so that we can tell it is Earth-like. We will need to add up many transits to do so – hundreds of them, even for stars as close as 20 light-years away.”

If we’re looking at a planet in an Earth-like orbit around a G-class star, then a ten-hour transit once a year is the best we can expect, meaning that collecting a hundred hours of transit data would take ten years. But the same world orbiting in the habitable zone of a red dwarf would make many more transits in the same amount of time because of its proximity to the primary star, which is why Kaltenegger says nearby M-dwarfs “…offer the best possibility of detecting biomarkers in a transiting Earth’s atmosphere.”

The paper is Kaltenegger and Traub, “Transits of Earth-like Planets,” accepted by The Astrophysical Journal and available online.