Spaceward Ho!

How do you go about creating a straightforward, highly durable design for a spacecraft, one that is readily refuelable and offers manifest advantages for crew comfort and safety? Alex Tolley and Brian McConnell have been asking that question for some time now, coming up with an ingenious solution that could open up large swathes of the Solar System. Alex tells me he is a former computer programmer now serving as a lecturer in biology at the University of California, where he hopes to inspire the next generation of biologists. He’s also a Centauri Dreams regular who was deeply influenced by 2001: A Space Odyssey and the Apollo landings. Below, he fills us in on the details in a narrative that imagines an early trip on such a vessel.

by Alex Tolley

alexgetty_2x

The covered wagon or prairie schooner is one of the iconic images of the 19th century westward migration of the American pioneers. The wagon was simple in construction, very rugged, and repairable. They were powered most often by oxen that lived on the food and water found along the trail. The cost of a wagon, oxen and supplies was about 6 months of family wages.

In 2009 my colleague Brian McConnell and I were thinking about how to open up the exploration of space in an analogous way to the opening up of the American West during the 19th century pioneering era. We were looking for an approach that, like the covered wagon, was affordable, relatively low tech, provided safety in the case of emergencies and the space environment, could “live off the land” for propulsion like oxen, and preferably was reusable so that costs could be amortised over a number of flights.

What follows is a description of the “spacecoach” from the perspective of a new crew member making a first visit to the ship that will be on a Phobos return mission.

900-3043

Image: ‘Ships of The Plains’ by Samuel Colman.

————————-

Our transfer vehicle docked gently with the Martian Queen airlock. On approach, the Martian Queen resolved into 4 fat sausages, linked end to end. On either side, from bow to stern, were solar PV arrays, partially unfurled. She looked like no spaceship seen since the dawn of the space age.. There was no gleaming metal hull, and she was devoid of all the encrustations of antennae and dishes of those earlier ships. Neither were there any signs of fuel tanks holding liquid cryofuels. Instead, the hull looked dull and somewhat like an old blimp, those non-rigid airships of the early 20th century. The only sign of exterior equipment were those solar PV panels. These were lightweight, moderate performance thin film arrays, extended out on booms to face the sun and drink her rays to power the ship. They looked more like square rigged sails as they fluttered every so gently in the tenuous atmosphere remaining at her orbit.

I knew from the briefing that the Martian Queen needed about 160KW of power, requiring about 800 m2 of arrays at Mars orbit. There was also talk of the next generation “spacecoaches” replacing the PV panels with lightweight rectennas, to convert microwave beams from the orbital transmitters. Most crews didn’t trust that idea yet, but adding a lightweight rectenna was considered a good idea to back up the PVs and also compensate for the lower intensity of sunlight as the newer ships were about to explore Jupiter space. So this was the Martian Queen, the “spacecoach” that would be my home, about to make her 2nd voyage to Phobos.

Following my crew mate Vicki, I passed through the airlock and entered a large space, nearly 60 m3 in volume, shaped like a large cylinder. The interior diameter was about 4.5 meters, about the same as the mothballed Orion I’d seen back at the Cape museum.. But with a length of 10 meters, the volume was 3x larger. The Martian Queen was composed of 4 modules, providing over 200 m3 of full sea level atmosphere pressurized volume, about 2/3rds that of the old Mir space station. Touching the inner skin of the hull it felt flexible, and slightly cool to the touch. A few light taps and the resonant sounds confirmed that there was liquid behind the skin.

Vicki answered my unspoken question about the liquid in the hull. Water was sandwiched between several layers of impermeable Kevlar in the hull. The primary, and ultimately end, use of all the water was for propellant. The spacoach had originally been folded for launch in a standard Falcon 9 fairing. Each module, without any propellant, weighed just 4 tonnes including payload. This was very little and reduced the deadweight mass of the ship. Once in orbit, the interior had been inflated and the hull filled with water. Most of that water had been launched by dumb, low cost boosters, but some was being supplied from extra-terrestrial resources. Supplies from the lunar south pole were becoming increasingly available as Chevron-Petrobras’ Shackleton base was building up mining production. Exploratory vessels were also initiating operations on asteroids, with 24 Themis looking promising with confirmed surface water. In a few decades, it was expected that all water would be supplied from extra-terrestrial sources.

“Why do you put all the water in the hull, rather than in separate tanks?” I asked.

Vicki explained that the water had a number of roles, not just as propellant. The primary reason was radiation protection. The water acted as a good radiation shield, with a halving of the radiation flux with every 18 cm. Starting with about 25 cm of water in the hull, the radiation level inside the module was just 40 percent of that striking the hull. In the event of a major solar flare, the crew could also redirect the water to an interior tube to provide the best radiation shielding for the crew. It looked like that space could get very cozy for the crew, but better than suffering radiation burns.

But it didn’t end there. Micrometeoroids are a rare, but important hazard. The water acted as a shield, absorbing the energy of these grains and preventing penetration inside the hull. The tiny holes in the outer layers quickly heal too. The outer layers of water could be allowed to freeze, trapping a dense forest of fine fibers between the 2 outer fabric layers. This made a strong material, very much like pykrete [1] that offered a stiff outer hull to protect against larger impacts. At Earth’s 1 AU from the sun, reflective foils deployed over the hull allowed passive freezing of the outer layers providing both protection and a large heat sink for the engines.

A noticeable side effect of the hull architecture was the silence. There are no clicks and bangs from thermal heating stresses. Nor did the sunward side of the interior feel noticeably warmer. Thus the water was going to offer very good thermal control of the interior, with pumps in the hull circulating the water providing dynamic thermal control.

Vicki indicated that I should follow her forward to another module. This included the kitchen and dining space. There was a freezer of dried food packages that was being organized by Pieter. Enough for a long trip with a fair variety of meals.

“You seem to have ordered a lot of Boeuf Bourguignon”, joked Pieter.

I wondered when the taste of Boeuf Bourguignon would become rather tiresome after some months. Perhaps more spicy meals like curries would have been more appropriate. I noted that the water supply for rehydrating the food and drinks was connected to the hull too. Of course, I reminded myself, the hull was a huge reservoir of water, effectively inexhaustible are far as the crew was concerned, at least on the outward bound flight.

The facilities were oriented so that “down” was towards the end of the module. This was because during cruise the Martian Queen was going to be rotated, providing some artificial gravity. This made the flight much more comfortable and familiar. We could even eat off regular plates.

Vicki quickly showed me the crew quarters and bathroom in the next module. The inner skin of the hull had been moulded into shapes that could contain water. The baths and showers were also connected to the hull’s water supply. The clean water input was connected to heaters and pumps to the various faucets and shower heads. The grey water from the drains was routed to the main purifier and returned to the hull. I inquired how frequently I could take a shower? Once, twice even three times a week?

“As much as you like”, said Vicki. “There is ample water supply for a single pass through the purifier for all the crew to shower once or twice a day. If the crew is particularly extravagant, even this can be increased with greater recycling. Hygiene is a huge morale booster on these trips.”

The toilet was apparently a composting type, although suitably modified for space. This made sense. The nitrogen and phosphorus was going to be needed for the plants growing in the interior, as well as the Phobos base agricultural areas. Nitrogen and phosphorus were still valuable elements with no rich, off-Earth supplies available. Ducking back into the kitchen space, it was clear that much of the interior was given over to growing plants. They provided the needed psychological connection with Earth, helped recycle the CO2, and freshened the air, removing unpleasant volatiles. The stale, locker room smell of most spaceships was almost absent. Some plants were also growing some fresh foods. I could just imagine the value of a fresh tomato after 6 months of spaceflight!

image01

Image: The Genesis 2 space module. An inflatable habitat launched in 2007 and still operational. A design concept similar to the spacecoach. Credit: Bigelow Aerospace (http://www.bigelowaerospace.com).

image02

Image: Inside Bigelow Aerospace Space Station Alpha mockup. This is similar to the spacecoach basic module before addition of specialized fixtures and fittings. Credit: Bigelow Aerospace.

Pulling ourselves back through the leafy interior of the modules, I looked for the engine compartment in the last module. The engines were not obvious on docking, and I wondered where they were. At the rear of the last module, an airlock was currently open, showing an enclosed space beyond. Inside, Hans, the engineer was taking apart one of the engines. He was removing a metal liner from the engine and replacing it with a fresh one. He handed the old one to me and said “carbon deposits”.

I looked closely and saw what he was talking about. Carbon deposition from contaminants in the water supply could build up in the engines, reducing performance. The engines were not much more complex than microwave ovens, although they were fitted with electric grids to further accelerate the microwave heated water plasma.

The exhaust exited via the rear, when the bay doors were opened. Now they were closed, allowing the shirt sleeve repair of the engines. I asked how frequent engine repairs were. Hans informed me that an engine needed some rework after 3-6 hours of operation. The microwave electrothermal engine performance had an Isp of about 800s, although the secondary electric grids could double that by drawing on reserve energy from the solar arrays. Vicki thanked Hans and we drifted back to the main module.

I was a little surprised at the lack of windows, but pleased that there were many flat screens where windows should have been. I looked “out” and saw that I had missed the vernier and maneuvering jets on the hull.

“How are these powered?” I asked Vicki.

“Hydrogen Peroxide, H2O2” she replied.

“Where’s the fuel?”.

“There isn’t any yet. It’s made during the flight. Some of the water in the hull is tapped off, run through that off-the-shelf, standard unit over there. We store the peroxide in hull pockets to wait for the next use. The peroxide engines aren’t very efficient, having an Isp of about 160s, but they provide higher thrust than the main engines and can be used to boost the ship for a faster departure, or land the ship on low gravity worlds with orbital delta-Vs of 0.5 km/s or less. The peroxide has other uses too. It can be decomposed to provide oxygen [3] more quickly than the main ESS electrolyzers, act as an energy store for emergency power [4] and finally as an excellent bactericide to keep the interior clean and remove the bacterial slimes and molds that grow on the inner skin, often in difficult to reach spaces. And before you ask, yes, we have rotating cleaning duties on the Martian Queen.”

So the water in the hull fulfilled a range of uses, before being finally consumed as propellant. Major uses included bathing, direct consumption, rehydrating food, growing plants and, of course, the main oxygen supply. It was converted to peroxide for the high thrust engines, for energy storage and for another emergency O2 supply.

“Vicki, a quick mental calculation seems to come up short on the water requirement for the flight. Is what I see all that is needed?”

Vicki smiled: “The impact of using water as propellant on performance is significant. The total water budget for the trip is about 4 times the total mass of the ship and payload, compared to about 14 times for a conventional liquid hydrogen and LOX chemical rocket, primarily because of the higher Isp of the electrothermal engines. But the low hull mass and reduced consumables payload reduces the main mass of the the Martian Queen allowing a much smaller, more efficient spaceship. She is also a lot roomier, more comfortable and much safer. An Apollo 13 type accident would not be survivable in a conventional ship, but we have very large reserves of consumables and oxygen for the crew to survive until a rescue or the return trajectory was complete. In addition, even without water supplies at Phobos, the baseline mission cost to Phobos and return is on the order of a $100m dollars. That is why your institution can afford to pay for your slot on this mission. Reusability of the Martian Queen for multiple missions, fresh water at Phobos, and better performing solar panels and electric engines will eventually reduce that cost perhaps another order of magnitude.”

I pondered that for a moment. While not a cheap solution for interplanetary travel, it put the cost well within the realm of the super-rich and wealthy institutions. A mere decade earlier, a simple lunar flyby and return in an adapted Soyuz craft was priced at around $100m per passenger by Space Adventures. Spaceflight was definitely getting cheaper and safer.

————————-

If interplanetary travel is initially based around the design concepts of water propellant craft, then the economics and infrastructure requirements will be dependent on available supplies of water already in space at suitable locations for fuel dumps. Bodies that may harbor economically useful quantities of accessible water include the moon (shadowed polar regions), water rich asteroids and dead comets. A tantalizing possibility is Ceres, that Dawn is expected to rendezvous with this year (2015). Ceres is expected to have prodigious quantities of frozen water, possibly even a subsurface ocean. A mining operation to extract pure water from the brew of ice and chemicals might offer the opportunity to open up the inner solar solar system. Once at Jupiter, the icy moons offer an almost inexhaustible supply of water.

References

1. Pykrete http://en.wikipedia.org/wiki/Pykrete

2. Bigelow Aerospace B330 http://bigelowaerospace.com/b330/

3. 47kg O2/1000 kg H2O2 (10%)

4. ~2 MJ, kg.

5. J E Brandenburg, J Kline and D Sullivan, “The microwave electro-thermal (MET) thruster using water vapor propellant,” Plasma Science, IEEE Transactions on (Volume:33, Issue:2) pp 776-782 (2005).

6. E. Wernimont, M. Ventura, G. Garboden and P. Mullens. “Past and Present Uses of Rocket Grade Hydrogen Peroxide”, http://www.hydrogen-peroxide.us/history-US-General-Kinetics/H2O2_Conf_1999-Past_Present_Uses_of_Rocket_Grade_Hydrogen_Peroxide.pdf

tzf_img_post

Food production on Mars: Dirt farming as the most scalable solution for settlement

Colonies on other worlds are a staple of science fiction and an obsession for rocket-obsessed entrepreneurs, but how do humans go about the business of living long-term once they get to a place like Mars? Alex Tolley has been pondering the question as part of a project he has been engaged in with the Interstellar Research Group. Martian regolith is, shall we say, a challenge, and the issue of perchlorates is only one of the factors that will make food production a major part of the planning and operation of any colony. The essay below can be complemented by Alex’s look at experimental techniques we can use long before colonization to consider crop growth in non-terrestrial situations. It will appear shortly on the IRG website, all part of the organization’s work on what its contributors call MaRMIE, the Martian Regolith Microbiome Inoculation Experiment.

by Alex Tolley

Introduction: Food Production Beyond Hydroponics

Conventional wisdom suggests that food production in the Martian settlements will likely be hydroponic. Centauri Dreams has an excellent post by Ioannis Kokkinidis on hydroponic food production on Mars, where he explains in some detail the issues and how they are best dealt with, and the benefits of this form of food production [1]

Still from a NASA video on a Mars base showing the hydroponics section.

A recent NASA short video on a very stylish possible design for a Mars base (see still above) shows a small hydroponics zone in the base, although its small size and what looks like all lettuce production would not be sufficient to feed one person, and that is before the monotonous diet would drive the crew to wish they had at least some potatoes from Mark Watney’s stash that could be cooked in a greater variety of ways.

I would tend to agree with the hydroponic approach, as well as other high-tech methods, as these food production techniques are already being used on Earth and will continue to improve, allowing a richer food source without needing to raise animals. Kokkinidis raises the issue of animal meat production for various cuisines, but in reality, the difficulties of transporting the needed large numbers of stock for breeding, as well as the increased demand for primary food production, would seem to be a major issue. [It should be noted that US farming occupies perhaps 2% of the population, yet most commentators on Mars groups seem to think that growing food on Mars will be relatively easy, with preferred animals to provide meat. How many Mars base personnel would be comfortable killing and preparing animals for consumption, even mucking out the pens?]

Hydroponics today is used for high-value crops because of the high costs. Many crops cannot be easily grown in this way. For example, it would be very difficult to grow tree fruits and nuts hydroponically, even though tree wood would be a very useful construction material. On Earth, hydroponics gains the highly desirable much-increased production per unit area coupled with a very high energy cost. It also requires inputs from established industrial processes which would have to be set up from scratch on Mars. Should there need to be lighting as well, low-energy LEDs would be hard to manufacture on Mars and would, initially at least, be imported from Earth.

Hydroponics is attractive to those with an engineering mindset. The equipment is understood, inputs and outputs can be measured and monitored, and optimized, and it all seems of a piece with the likely complexity of the transport ships and Mars base technology. It may even seem less likely to get “dirt under the fingernails” compared to traditional farming, a feature that appeals to those who prefer cleaner technologies. Unfortunately, unlike on Earth, if a critical piece of equipment fails, it will not be easily replaceable from inventory. Some parts may be 3D printable, but not complex components, or electronics. Failure of the hydroponic system due to an irreplaceable part failure would be catastrophic and lead to starvation long before a replacement would arrive from Earth. If ever there was a need for rapid cargo transport to support a Martian base, this need for rapid supply delivery would be a prime driver [4].

Soil from Regolith

Could more traditional dirt farming work on Mars, despite the apparent difficulties and lack of fine control over plant growth? The discovery that the Martian regolith has toxic levels of perchlorates and would make a very poor soil for plants seems to rule out dirt farming. If the Gobi desert is more hospitable than Mars, then trying to farm the sands of Mars might seem foolhardy, even reckless.

However, after working on a project with the Interstellar Research Group (IRG), I have to some extent changed my mind. If the Martian regolith can be made fertile, it would open up a more scalable and flexible method to grow a greater variety of plant crops than seems possible with hydroponics. Scaling up hydroponics requires far more manufacturing infrastructure than scaling up farming with an amended regolith if regolith remediation does not require a lot of equipment.

So the key questions are how to turn the regolith into viable soil to make such a traditional farming method viable, and what does this farming buy in terms of crop production, variety, and yields?

The first problem is to remove the up to 1% of perchlorates in the regolith that are toxic to plants. While perchlorates do exist naturally in some terrestrial soils, such as the Atacama desert, they are at far lower concentrations. Perchlorates are used in some industrial processes and products (e.g. rocket propellant, fireworks), and spills and their cleanup are monitored by the Environmental Protection Agency (EPA) in the USA. Chlorates were used as weedkillers and are potent oxidizers, a feature that I used in my teenage rocket experimentation, but are now banned in the EU.

There are 2 primary ways to remove perchlorates. If there is a readily available water supply, the regolith can be washed and the water-soluble perchlorates can be flushed away. The salt can be removed from the perchlorate solution with a reverse osmosis unit, a mature technology in use for desalination and water purification today. In addition, agitation of the regolith sand and dust can be used to remove the sharp edges of unweathered grains. This would make the regolith far safer to work with, and reduce equipment failure due to the abrasive dust damaging seals and metal joints. Agitation requires the low technology of rotating drums filled with a slurry of regolith and water.

A second, and more elegant approach, is to bioremediate with bacteria that can metabolize the regolith in the presence of water [5,6,7,8]. While it would seem simple to just sprinkle the exposed Martian surface with an inoculant, this cannot work, if only because the temperature on the surface is too cold. The regolith will have to be put into more clement conditions to maintain the water temperature and at least minimal atmospheric pressure and composition. At present, it is unknown what minimal conditions would be needed for this approach to work, although we can be fairly certain that terrestrial conditions inside a pressurized facility would be fine. There are a number of bacterial species that can metabolize chlorates and perchlorates to derive energy from ionized salts. A container or lined pit of graded regolith could be inoculated with suitable bacteria and the removal of the salt monitored until the regolith was essentially free of the salt. This would be the first stage of regolith remediation and soil preparation.

There is an interesting approach that could make this a dual-use system that offers safety features. The bacteria can be grown in a bioreactor, and the enzymes needed to metabolize perchlorates extracted. It has been proposed that rather than fully metabolizing the salt to chloride, enzymes could be applied that will stop at the release of free oxygen (O2). This can be used as life support or oxidant for rocket fuel, or even combustion engines on ground vehicles. The enzymes could be manufactured by gene-engineered single-cell organisms in a bioreactor, or the organisms can be applied directly to the regolith to release the O2 [10]. The design of the Spacecoach by my colleague, Brian McConnell, and me used a similar principle. As the ship used water for propellant and hull shielding, in the case of an emergency, the water could be electrolyzed to provide life-supporting O2 for a considerable time to allow for rescue [9]. Extracting oxygen from the perchlorates with enzymes is a low-energy approach to providing life support in an emergency. A small, portable, emergency kit containing a plastic bag and vial of the enzyme, could be carried with a spacesuit, or larger kits for vehicles and habitat structures.

After the perchlorate is removed from the regolith, what is left is similar to broken and pulverized lava. It may still be abrasive, and need to be abraded by agitation as in the mechanical perchlorate flushing approach.

So far so good. It looks like the perchlorate problem is solved, we just need to know if it can be carried out under conditions closer to Martian surface conditions, or whether it is best to do the processing under terrestrial or Mars base conditions. If the bacterial/enzyme amendment can be done in nothing more than lined and covered pits, or plastic bags, with a heater to maintain water at an optimum temperature, that would be a plus for scalability. If the base is located in or near a lava tube, then the pressurized tube might well provide a lot of space to process the regolith at scale.

Like lunar regolith, it has been established that perchlorate-free regolith is a poor medium for plant growth. Experiments on Mars Regolith Simulant (MRS) under terrestrial conditions of temperature, atmospheric composition, and pressure, indicate that the MRS needs to be amended to be more like a terrestrial soil. This requires nutrients, and ideally, structural organic carbon. If just removing the perchlorates, adding nutrients, and perhaps water-retaining carbon was all that was needed, this might not be too dissimilar to a hydroponic system using the regolith as a substrate. But this is really only part of the story in making fertile soil.

Nitrogen in the form of readily soluble nitrates can be manufactured on Mars chemically, using the 1% of N2 in the atmosphere. It is also possible nitrogen rich minerals on Mars may be found too. Phosphorus is the next most important macronutrient. This requires extraction from the rocks, although it is possible that phosphorus-rich sediments also may be found on Mars.

To generate the organic carbon content in the regolith, the best approach is to grow a cover crop and then use that as the organic carbon source. Fungal and bacterial decomposition, as well as worms, decompose the plants to create humus to build soil. Vermiculture to breed worms is simple given plant waste to feed on, and worm waste makes a very good fertilizer for plants. Already we see that more organisms are going to have to be brought from Earth to ensure that decomposition processes are available. In reality, healthy terrestrial soils have many thousands of different species, ranging in size from bacteria to worms, and ideally, various terrestrial soils would be brought from Earth to determine which would make the best starting cultures to turn the remediated regolith into a soil suitable for growing crops.

Ioannis Kokkinidis indicated that Martian light levels are about the same as a cloudy European day. Optimum growth for many crops needs higher intensity light, as terrestrial experiments have shown that for most plants, increasing the light intensity to Earth levels is one of the most important variables for plant growth. This could be supplied by LED illumination or using reflective surfaces to direct more sunlight into the greenhouse or below-ground agricultural area.

One issue is surface radiation from UV and ionizing radiation. This has usually resulted in suggestions to locate crops below ground, using the surface regolith as a shield. This may not be necessary as a pressurized greenhouse with exposure to the negligible pressure of Mars’ atmosphere, could support considerable mass on its roof to act as a shield. At just 5 lbs/sq.in, a column of water or ice 10 meters thick could be supported. It would be fairly transparent and therefore allow the direct use of sunlight to promote growth, supplemented by another illumination method.

Soil is not a simple system, and terrestrial soils are rich ecosystems of organisms, from bacteria, fungi, and many phyla of small animals, as well as worms. These organisms help stabilize the ecosystem and improve plant productivity. Bacteria release antibiotics and fungi provide the communication and control system to ensure the bacterial balance is maintained and provide important growth coordination compounds to the plants through their roots. The animals feed on the detritus, and the worms also create aeration to ensure that O2 reaches the animals and aerobic fungi and bacteria.

Most high-yield, agricultural production destroys soil structure and its ecosystems. The application of artificial fertilizers, herbicides to kill weeds, and pesticides to kill insect predators, will reduce the soil to a lifeless, mineral, reverting it back to its condition before it became soil. The soil becomes a mechanical support structure, requiring added nutrients to support growth.

Some farmers are trying new ideas, some based on earlier farming methods, to restore the fertility of even poor soils. This requires careful planting schedules, maintenance of cover crops, and even no-tilling techniques that emulate natural systems. Polyculture is an important technique for reducing insect pests. Combined, these techniques can remediate poor soils, eliminate fertilizers and agricultural chemicals, improve farm profitability, and even result in higher net yields than current farm practices. [11]

Without access to industrial production of agricultural chemicals and nutrients, these experimental farming practices will need to be honed until they work on Mars.

Given we have regolith-based soil what sort of crops can be grown? Almost any terrestrial crop as long as the soil conditions, drainage, pH, and illumination can be maintained.

Unlike on Earth where crops are grown where the conditions are already best, on Mars, it might well be that the crops grown will be part of a succession of crops as the soil improves. For example, in arid regions, millet is a good crop to grow with limited water and nutrients as it grows very easily under poor conditions. Ground cover plants to provide carbon and that fix nitrogen might well be a rotation crop to start and maintain the soil amendment. As the soil improves, the grains can be increased to include wheat and maize, as well as barley. With sufficient water, rice could be grown. None of these crops require pollinators, just some air circulation to ensure pollination.

For proteins, legumes and soy can be grown. These will need pollinating, and it might well be worth maintaining a greenhouse that can include bees. Keeping this greenhouse isolated will prevent bees from escaping into the base. As most of our foods require insect pollination, root crops like potatoes, carrots, and turnips, can be grown, as well as leafy greens like lettuce, and cabbage. The pièce de résistance that dirt farming allows is tree crops. A wide variety of fruit and nuts can be grown. Pomegranates are particularly suited to arid conditions. The leaf litter from such deciduous trees will be further input to improve the soil.

So the soil derived from regolith should allow a wider variety of crops to be grown, and with this, the possible variety of cuisine dishes can be supported. Food is an important component of human enjoyment, and the variety will help to keep morale high, as well as provide an outlet for prospective cooks and foodies.

Are there other benefits? As any gardener knows, growing food in the dirt is less time-consuming than hydroponics as the system is more stable, self-correcting, and resilient. This should allow for more time to be spent on other tasks than constantly maintaining a hydroponic system, where a breakdown must be fixed quickly to prevent a loss.

Meat production is beyond the scope of this essay. I doubt it will be of much importance for two main reasons. Meat production is a very inefficient use of energy. It is far better to eat plants directly, rather than convert them to meat and lose most of the captured energy. The second is the difficulty of transporting the initial stocks of animals from Earth. The easiest is to bring the eggs of cold-blooded animals (poikilotherms) and hatch them on Mars. Invertebrates and perhaps fish will be the animals to bring for food. If you can manage to feed rodents like rabbits on the ship, then rabbits would be possible. But sheep, goats, and cows are really out of the question. A million-resident city might best create factory meat from the crops if the needed ingredients can be imported or locally manufactured. My guess is that most Mars settlers will be Vegetarian or Vegan, with the few flexitarians enjoying the occasional fish or shrimp-based meal.

If you have read this far, it should be obvious that dirt farming sustainably, is not simple, nor is it easy or quick. A transport ship carrying settlers to Mars will have to supply food to eat until the first food crops can be grown. That food will likely be some variant of the freeze-dried, packaged food eaten by astronauts. Hopefully, it will taste a lot better. The fastest way to grow food crops will be hydroponics. All the kit and equipment will have to be brought from Earth. With luck, this system will reduce the demand for packaged food and become fairly sustainable, although nutrients will have to be supplied, nitrogen in particular. I don’t see sacks of nitrogen fertilizer being brought down to the surface, but instead, there may be a chemical reactor to extract the nitrogen in the Martian air and either create ammonia or nitrates for the hydroponic system.

But if the intention, as Musk aims, is to make Mars a second home, starting with 1 million residents, the size of the population that is large enough to provide the skills for modern civilization, then food production is going to need to be far more extensive than a hydroponics system in every dome or lava tube. The best way is to grow the soil as discussed above. This will not be quick and may take years before the first amended regolith becomes rich loamy, fertile soil. The sterile conditions on Mars mean that there will be no free ecosystem services. Every life form will have to originate on Earth and be transported to Mars. But life replicates, and this replication is key to success in the long term. There will be a mixture of biodiverse allotments and tracts of large-scale arable farming. Without some new technology to deflect ionizing radiation, the Martian sunlight will probably need to be indirect and directed to the crops protected by mass shields. Every square meter of Martian sunlight will only be able to support ½ a square meter of crops, so there may need to be an industry manufacturing polished metal mirrors to collect the sunlight and redirect it.

Single-cells for artificial food

Although our sensibilities suggest that the Martian settlers will want real food grown from recognizable food crops, this may be a false assumption. In the movie 2001: A Space Odyssey, Kubrick ignored Clarke’s description in his novel of how food was provided and eaten, with the almost humorous showing of liquid foods with flavors served to Heywood Floyd on his trip to the Moon.

Still from the movie 2001: A Space Odyssey. The flight attendant (Penny Brahms) is bringing the flavored, liquid food trays to the passenger and crew.

Because the Moon does not have terrestrial day-night cycles, the food was single-celled and likely grown in vats, then processed to taste like the foods they were substituting for.

Michaels: Anybody hungry?
Floyd: What have we got?
Michaels: You name it.
Floyd: What’s that, chicken?
Michaels: Something like that.
Michaels: Tastes the same anyway.
Halvorsen: Got any ham?
Michaels: Ham, ham, ham..there, that’s it.
Floyd: Looks pretty good
Michaels: They are getting better at it all the time.

Still from the movie 2001: A Space Odyssey. Floyd and the Clavius Base personnel select sandwiches made from processed algae. Above is the conversation Floyd (William Sylvester) has with Halvorsen (Robert Beatty) and Michaels (Sean Sullivan) on the moon bus on his way to TMA1.

This is where food technology is currently taking us.

Single-cell protein has been available since at least the 18th century with edible yeast. Marmite or Vegemite is a savory, yeast-based, food spread that is an acquired taste. Today there is revived interest in various forms of SCP, some of which are commercially available for consumers, such as Quorn made from the micro-fungus, Fusarium venenatum. The advantage of single cells is that the replication rate is so high that the raw output of bacterial cells can be more than doubled daily. The technology, at least on Earth, could literally reduce huge tracts of agricultural land use, especially of meat animals. However, it does require all the inputs that hydroponic systems require, and further processing to turn the cells into palatable foods including simulated meats. Should such single-cell food production become the basic way to ensure adequate calories and food types for settlers, I suspect that real food will be as desirable as it was for Sol Roth and Detective Thorn in Soylent Green.

Still from the movie Soylent Green. Sol Roth (Edward G. Robinson) bites into an apple, stolen by Detective Thorn (Charlton Heston), that he hasn’t tasted in many years since terrestrial farming collapsed.

Physical and Mental Health with Soil

However, even if single-cell bioreactors, food manufacturing, and hydroponics do become the main methods of providing food, that does not mean that creating fertile soils from the regolith is a waste of effort. Surrounded by the ochres of the Martian landscape, the desire to see green and vegetation may be very important for mental health. Soils will be wanted to grow plants to create green spaces, perhaps as lavish as that in Singapore’s Changi Airport. Seeds brought from Earth are a low-mass cargo that can exploit local atoms to create lush landscaping for the interior of a settlement.

Changi Airport, Singapore. A luxurious and restful interior space of tropical plants and trees.

There is a tendency to see life on Mars not just as a blank canvas to start afresh, but also as a sterile world free of diseases and other biological problems associated with Earth. Asimov’s Elijah Bailey stories depicted “germ-free” Spacers as healthier and far longer-lived than Earthmen In their enclosed cities. We now know that our bodies contain more bacterial cells than our mammalian cells. We cannot live well without this microbiome that helps us withstand disease, digest our foods, and even influence our brain development. There is even a suggestion that children that have not been exposed to dirt become more prone to allergies later in life. Studies have shown that most animals have a microbiome with varying numbers of bacterial species. As Mars is sterile, at least as regards a rich terrestrial biosphere, it might well make sense to “terraform” it at least within the settlement cities. Creating soils that will become reservoirs for bacteria, fungi, and a host of other animal species will aid human survival and may become a useful source of biological material for the settlers’ biotechnology.

If Mars is to become a second home for humanity, it will need more people than the villages and small towns that the historical migrants to new lands create. The needed skills to make and repair things are vastly larger than they were less than two centuries ago. Technology is no longer limited to artisans like carpenters, wheelwrights, and blacksmiths, with more complex technology imported from the industrial nations. Now technologies depend on myriad specialty suppliers and capital-intensive factories. Mars will need to replicate much of this in time, which requires a large population with the needed skills. A million people might be a bare minimum, with orders more needed to be largely self-sufficient if the population is to be the backup for a possible future extinction event on Earth. Low-mass, high-value, and difficult-to-manufacture items will continue to be imported, but much else will best be manufactured locally, with a range of techniques that will include advanced additive printing. But some technologies may remain simple, like the age-old fermentation vats and stills. After all, how else will the settlers make beer and liquor for partying on Saturday nights?

References:

Kokkinidis, I (2016) “Agriculture on Other Worlds” https://centauri-dreams.org/2016/03/11/agriculture-on-other-worlds/

Kokkinidis, I (2016) “Towards Producing Food in Space: ESA’s MELiSSA and NASA’s VEGGIE”
https://centauri-dreams.org/2016/05/20/towards-producing-food-in-space-esas-melissa-and-nasas-veggie/

Kokkinidis, I (2017) “Agricultural Resources Beyond the Earth” https://centauri-dreams.org/2017/02/03/agricultural-resources-beyond-the-earth/

Higgins, A (2022) “Laser Thermal Propulsion for Rapid Transit to Mars: Part 1”
https://centauri-dreams.org/2022/02/17/laser-thermal-propulsion-for-rapid-transit-to-mars-part-1/

Balk, M. (2008) “(Per)chlorate Reduction by the Thermophilic Bacterium Moorella perchloratireducens sp. nov., Isolated from Underground Gas Storage” Applied and Environmental Microbiology, Jan. 2008, p. 403–409 Vol. 74, No. 2
https://journals.asm.org/doi/10.1128/AEM.01743-07

Coates J.D., Achenbach, L.A. (2004) “Microbial Perchlorate Reduction: Rocket-Fueled Metabolism”, Nature Reviews | Microbiology Volume 2 | July 2004 | 569
doi:10.1038/nrmicro926

Hatzinger P.B. &2005) , “Perchlorate Biodegradation
for Water Treatment Biological reactors”, 240A Environmental Science & Technology / June 1, 2005 American Chemical Society

Kasiviswanathan P, Swanner Ed, Halverson LJ, Vijayapalani P (2022) “Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth.” PLoS ONE 17(8): e0272209.
https://doi.org/10.1371/journal.pone.0272209

Gilster, P “Spacecoach: Toward a Deep Space Infrastructure“, https://centauri-dreams.org/2016/06/28/spacecoach-toward-a-deep-space-infrastructure/

Davila A.F. et all (2013) “Perchlorate on Mars: a chemical hazard and a resource for humans” International Journal of Astrobiology 12 (4): 321–325 (2013)
doi:10.1038/nrmicro926doi:10.1017/S1473550413000189

Monbiot, G. (2022) Regenesis: Feeding the World Without Devouring the Planet Penguin ISBN: 9780143135968

Remote Observation: What Could ET See?

As we puzzle out the best observing strategies to pick up a bio- or technosignature, we’re also asking in what ways our own world could be observed by another civilization. If such exist, they would have a number of tools at their disposal by which to infer our existence and probe what we do. Extrapolation is dicey, but we naturally begin with what we understand today, as Brian McConnell does in this, the third of a three-part series on SETI issues. A communications systems engineer, Brian has worked with Alex Tolley to describe a low-cost, high-efficiency spacecraft in their book A Design for a Reusable Water-based Spacecraft Known as the Spacecoach (Springer, 2015). His latest book is The Alien Communication Handbook — So We Received A Signal, Now What? recently published by Springer Nature. Is our existence so obvious to the properly advanced observer? That doubtless depends on the state of their technology, about which we know nothing, but if the galaxy includes billion-year old cultures, it’s hard to see how we might be missed.

by Brian McConnell

In SETI discussions, it is often assumed that an ET civilization would be unaware of our existence until they receive a signal from us. I Love Lucy is an often cited example of early broadcasts they might stumble across. Just as we are developing the capability to directly image exoplanets, a more astronomically advanced civilization may already be aware of our existence, and may have been for a long time. Let’s consider several methods by which an ET could take observations of Earth:

  • Spectroscopic analysis of Earth’s atmosphere
  • Deconvolution of Earth’s light curve
  • Solar gravitational lens telescopes
  • Solar system scale interferometers
  • High speed flyby probes (e.g. Starshot)
  • Slow traveling probes that loiter in near Earth space (Lurkers, Bracewell probes)

Spectroscopic Analysis

We are already capable of conducting spectroscopic analysis of the light passing through exoplanet atmospheres, and as a result, are able to learn about their general characteristics. This capability will soon be extended to include Earth sized planets. An ET astronomer that had been studying Earth’s atmosphere over the past several centuries would have been able to see the rapid accumulation of carbon dioxide and other fossil fuel waste gases. This signal is plainly evident from the mid 1800s onward. Would this be a definitive sign of an emergent civilization? Probably not, but it would be among the possible explanations, and perhaps a common pattern as an industrial civilization develops. Other gases, such as fluorocarbons (CFCs and HFCs) have no known natural origin, and would more clearly indicate more recent industrial activity.

There is also no reason not to stop at optical/IR, and not conduct similar observations in the microwave band, both to look for artificial signals such as radars, but also to study the magnetic environment of exoplanets, much like we are using the VLA to study the magnetic fields of exoplanets. It’s worth noting that most of the signals we transmit are not focused at other star systems, and would appear very weak to a distant observer, though they might notice a general brightening in the microwave spectrum, much like artificial illumination might be detectable. This would be a sure sign of intelligence, but we have not been “radio bright” for very long, so this would only be visible to nearby systems.

Deconvolution

Even if we can only obtain a single pixel image of an exoplanet, we can use a technique called deconvolution to develop a low resolution image of it by measuring how its brightness and color varies as the planet rotates. This is not unlike building an image by moving a light meter across a surface to build a map of light levels that can be translated into an image. It won’t be possible to build a high resolution image, but it will be possible to see large-scale features such as oceans, continents and ice caps. While it would not be possible to directly see human built structures, it would be clear that Earth has oceans and vegetation. Images of Pluto taken before the arrival of the New Horizons probe offer an example of what can be done with a limited amount of information.

Comparison of images of Pluto taken by the New Horizons probe (left) and the Hubble Space Telescope via light curve reconstruction (right). Image credit: NASA / Planetary Society.

Svetlana Berdyugina and Jeff Kuhn presented a presentation on this topic at the 2018 NASA Techno Signatures symposium where they simulated what the Earth would look like through this deconvolution process. In the simulated image, continents, oceans and ice caps are clearly visible, and because the Earth’s light curve can be split out by wavelength, it would be possible to see evidence of vegetation.

Solar Gravitational Lens Telescopes

A telescope placed along a star’s gravitational lens focal line will be able to take multi pixel images of exoplanets at considerable distances. Slava Turyshev et al show in this NASA NIAC paper that it will be possible to use an SGL telescope to image exoplanets at 1 kilometer per pixel resolution out to distances of 100 light years. A SGL telescope pointed at Earth might be able to see evidence of large scale agriculture, urban centers, night side illumination, reservoirs, and other signs of civilization. Moreover, pre-industrial activity and urban settlements might be visible to this type of instrument, which raises the possibility that an ET civilization with this capability would have been able to see evidence of human civilization centuries ago, perhaps Longer.

A simulated image of an exoplanet as seen from an SGL telescope. Image credit: NASA/JPL

A spacefaring civilization that happens to have access to a nearby black hole would have an even better lens to use (the Sun’s gravitational lens is slightly distorted because of the Sun’s rotation and oblate shape).

Solar System Scale Interferometers

The spatial resolution of a telescope is a function of its aperture size and the wavelength of the light being observed. Using interferometry, widely separated telescopes can combine their observations, and increase the effective aperture to the distance between the telescopes. The Black Hole Event Horizon Telescope used interferometry to create a virtual radio telescope whose aperture was the size of Earth. With it, we were able to directly image the accretion disc of galaxy M87’s central black hole, some 53 million light years away.

Synthetic microwave band image of M87’s central black hole’s shadow and nearby environment. Image credit: Event Horizon Telescope

Now imagine a fleet of optical interferometers in orbit around a star. They would have an effective aperture measuring tens to hundreds of millions of kilometers, and would be able to see small surface details on distant exoplanets. This is beyond our capabilities to build today, but the underlying physics say they will be possible to build, which is to say it is an expensive and difficult engineering problem, something a more advanced civilization may have built. Indeed, we began to venture down this path with the since canceled SIM (Space Interferometry Mission) and LISA (Laser Interferometer Space Antenna) telescopes.

A solar system scale constellation of optical interferometers would be able to resolve surface details of distant objects at a resolution of 1-10 meters per pixel, comparable to satellite imagery of the Earth, meaning that even early agriculture and settlements would be visible to them.

Fast Flyby Probes

Fast lightsail probes, similar to the Breakthrough Starshot probes that we hope to fly in a few decades, will be able to take high resolution images of exoplanets as the probes fly past target planets. Images taken of Pluto by the New Horizons probe probably give an idea of what to expect in terms of resolution. It was able to return images at a resolution of less than 100 meters per pixel, smaller than a city block.

The primary challenges in obtaining high resolution images from probes like these are: the speed at which the probe flies past its target (0.2c in the case of the proposed starshot probe),and transmitting observations back to the home system. Both of these are engineering problems. For example, the challenge of capturing images can be solved by taking as many images as possible during the flyby and then using on board post processing to create a synthesized image. Communication is likewise an engineering problem that can be solved with better onboard power sources and/or large receiving facilities at the home system. If the probe itself is autonomous and somewhat intelligent, it can also decide which parts of the collected imagery are most interesting and prioritize their transmission.

The Breakthrough Starshot program envisions launching a large number of cheap, lightweight lightsails on a regular cadence, so while an individual probe might only be able to capture a limited set of observations, in aggregate they may be able to return extensive observations and imagery over an extended period of time.

Slow Loitering Probes (Lurkers and Bracewell Probes)

An ET civilization that has worked out nuclear propulsion would be able to send slower traveling probes to loiter in near Earth space. These probes could be long lived, and could be designed for a variety of purposes. Being in close proximity to Earth, they would be able to take high resolution images over an extended period of time. Consider that the Voyager probes, among the first deep space probes we built, are still operational today. ET probes could be considerably more long lived and capable of autonomous operation. If they are operating in our vicinity, they would have been able to see early signs of human activity back to antiquity. One important limitation is that only nearby civilizations would be able to launch probes to our vicinity within a few hundred years.

The implication of this is not just that an ETI could be able to see us today, they could have been able to study the development of human civilization from afar, over a period spanning centuries or millennia. Beyond that, Earth has had life for 3.5 billion years, and life on land for several hundred million years. So if other civilizations are surveying habitable worlds on an ongoing basis, Earth may have been noticed and flagged as a site of interest long before we appeared on the scene.

One of the criticisms of SETI is that the odds of two civilizations going “online” within an overlapping time frame may be vanishingly small, which implies that searching for signals from other civilizations may be a lost cause. But what if early human engineering projects, such as the Pyramids of Giza, had been visible to them long ago? Then the sphere of detectability expands by orders of magnitude, and more importantly, these signals we have been broadcasting unintentionally have been persistent and visible for centuries or millennia.

This has ramifications for active SETI (METI) as well. Arguments against transmitting our own artificial signals, on the basis that we might be risking hostile action by neighbors, may be moot if most advanced civilizations have some of the capabilities mentioned in this article. At the very least, they would know Earth is an inhabited world and a site for closer study, and may well have been able to see early signs of human civilization long ago. So perhaps it is time to revisit the METI debate, but this time with a focus on understanding what unintentional signals or techno signatures we have been sending and who could see them.

tzf_img_post

Wind Rider: A High Performance Magsail

Can you imagine the science we could do if we had the capability of sending a probe to Jupiter with travel time of less than a month? How about Neptune in 18 weeks? Alex Tolley has been running the numbers on a concept called Wind Rider, which derives from the plasma magnet sail he has analyzed in these pages before (see, for example, The Plasma Magnet Drive: A Simple, Cheap Drive for the Solar System and Beyond). The numbers are dramatic, but only testing in space will tell us whether they are achievable, and whether the highly variable solar wind can be stably harnessed to drive the craft. A long-time contributor to Centauri Dreams, Alex is co-author (with Brian McConnell) of A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2016), focusing on a new technology for Solar System expansion.

by Alex Tolley

In 2017 I outlined a proposed magnetic sail propulsion system called the Plasma Magnet that was presented by Jeff Greason at an interstellar conference [6]. It caught my attention because of its simplicity and potential high performance compared to other propulsion approaches. For example, the Breakthrough Starshot beamed sail required hugely powerful and expensive phased-array lasers to propel a sail into interstellar space. By contrast, the Plasma Magnet [PM] required relatively little energy and yet was capable of propelling a much larger mass at a velocity exceeding any current propulsion system, including advanced solar sails.

The Plasma Magnet was proposed by Slough [5] and involved an arrangement of coils to co-opt the solar wind ions to induce a very large magnetosphere that is propelled by the solar wind. Unlike earlier proposals for magnetic sails that required a large electric coil kilometers in diameter to create the magnetic field, the induction of the solar wind ions to create the field meant that the structure was both low mass and that the size of the resulting magnetic field increased as the surrounding particle density declined. This allowed for a constant acceleration as the PM was propelled away from the sun, very different from solar sails and even magsails with fixed collecting areas.

The PM concept has been developed further with a much sexier name: the Wind Rider, and missions to use this updated magsail vehicle are being defined.

Wind Rider was presented at the 2021 Division of Planetary Sciences (DPS) meeting by the team led by Brent Freeze, showing their concept of the design for a Jupiter mission they called JOVE. The December meeting of the American Geophysical Union was the venue for a different Wind Rider concept mission to the SGL, called Pathfinder.

The main upgrade from the earlier PM to the Wind Rider is the substitution of superconducting coils. This allows the craft to maintain the magnetic field without requiring constant power to maintain the electric current, reducing the required power source. Because the superconducting coils would quickly heat up in the inner system and lose their superconductivity, a gold foil reflective sun shield is deployed to shield the coils from the sun’s radiation. This is shown in the image above with the shield facing the sun to keep the coils in shadow. The shield is also expected to do double duty as a radio antenna, reducing the net parasitic mass on the vehicle.

The performance of the Wind Rider is very impressive. Calculations show that it will accelerate very rapidly and reach the velocity of the solar wind, about 400 km/s. This has implications for the flight trajectory of the vehicle and the mission time.

The first mission proposal is a flyby of Jupiter – Jupiter Observing Velocity Experiment (JOVE) – much like the New Horizons mission did at Pluto.

Figure 1. The Wind Rider on a flyby of Jupiter. The solar panels are hidden behind the sun shield facing the sun. The 16U CubeSat chassis is at the intersection of the 2 coils and sun shield.

The JOVE mission proposal is for an instrumented flyby of Jupiter [2]. The chassis is a 16U CubeSat. The scientific instrument payload is primarily to measure data on the magnetic field and ion density around Jupiter. The sail is powered by 4 solar panels that also double as struts to support the sun shield and generate about 1300 W at 1 AU and fall to about 50W at Jupiter.

Figure 2. Trajectory of the Wind Rider from Earth to Jupiter

The flight trajectory is effectively a beeline directly to Jupiter, starting the flight almost at opposition. No gravity assists from Earth or Venus are required, nor a long arcing trajectory to intercept Jupiter. Figure 2 shows the trajectory, which is almost a straight-line course with the average velocity close to that of the solar wind.

Although the mission is planned as a flyby, a future mission could allow for orbital insertion if the craft approaches Jupiter’s rotating magnetosphere to maximize the impinging field velocity. Although not mentioned by the authors, it should be noted that Slough has also proposed using a PM as an aerobraking shield that decelerates the craft as it creates a plasma in the upper atmosphere of planets.

How does the performance of the Wind Rider compare to other comparable missions?

The JUNO space probe to Jupiter had a maximum velocity of about 73 km/s as Jupiter’s gravity accelerated the craft towards the planet. The required gravity assists and long flight path, about 63 AU or over 9 billion km, mean that its average velocity was about 60 km/s. This is not the fairest comparison as the JUNO probe had to attain orbital insertion at Jupiter.

A fairer comparison is the fastest probe we have flown – the New Horizons mission to Pluto — which reached 45 km/s as it left Earth but slowed to 14 km/s as it flew by Pluto. New Horizons took 1 year to reach Jupiter to get a gravity assist for its 9 year mission to Pluto, and therefore a maximum average velocity of 19 km/s between Earth and Jupiter.

Wind Rider can reach Jupiter in less than a month. Figure 2 shows the almost straight-line trajectory to Jupiter. Launched just before opposition, Wind Rider reaches Jupiter in just over 3 weeks. Because opposition happens annually, a new mission could be launched every year.

As the Wind Rider quickly reaches its terminal velocity at the same velocity as the solar wind, it can reach the outer planets with comparably short times with the same trajectory and annual launch windows.

The Wind Rider can fly by Saturn in just 6 weeks, and Neptune in 18 weeks. Compare that to the Voyager 2 probe launched in 1977 that took 4 years and 12 years to fly by the same planets respectively. Pluto could be reached by Wind Rider in just 6 months.

Because of its high terminal velocity that does not reduce during its mission, the Wind Rider is also ideally suited for precursor interstellar missions.

The second proposed mission is called Pathfinder [1], proposed to ultimately reach the solar gravity focal line around 550 AU from the sun. Flight time is less than 7 years, making this a viable project for a science and engineering team and not a multi-generation one based on existing rocket propulsion technology. As the flight trajectory is a straight line, this makes the craft well suited to follow the focal line while imaging a target star or exoplanet using the sun’s diameter as a large aperture telescope to increase the resolving power.

As the Wind Rider reaches the solar wind velocity, it may even be able to ride the gusts of higher solar wind velocities, perhaps reaching closer to 550 km/s.

While solar sails have been considered the more likely means to reach high velocities, especially when making sun-diver maneuvers, even advanced sails with proposed areal densities well below anything available today would reach solar system escape velocities in the range of 80-120 km/s [3]. If the Wind Rider can indeed reach the velocity of the solar wind, it would prove a far faster vehicle than any solar sail being planned, and would not need a boost from large laser arrays, nor risky sun-diver maneuvers.

I would inject some caution at this point regarding the performance. The performance is based entirely on theoretical work and a small scale laboratory experiment. What is needed is a prototype launched into cis-lunar space to test the performace on actual hardware and confirm the capability of the technology to operate as theorized.

It should also be noted that despite its theoretical high performance, there is a potential issue with propelling a probe with a magnetic sail. Compared to a solar sail or a vehicle with reaction thrusters, the Wind Rider as described so far has no crosswind capability. It just runs in front of the solar wind like a dandelion seed in the wind. This means that it would have to be aimed very accurately at its target, and subject to the vagaries of the strength of the solar wind that is far less stable than the sun’s photon emissions. Like the dandelion, if the Wind Rider was very inexpensive, many could be launched in the expectation that at least one would successfully reach its target.

However, there is a possibility that some crosswind capability is possible. This is based on modelling by Nishida [4]. This paper was recommended by Dr. Freeze [7].

The study modeled the effect of the angle of attack of the magnetic field of a coil against the solar wind. The coil in this case would represent the induced circular movement of the solar wind induced by the primary Wind Rider/PM coils.

Theoretically, the angle of attack has an impact on the total force pushing past the magnetic field.

Figure 3 shows the pressure and on the field as the coil is rotated from 0 through 45 and 90 degrees to the solar wind.

The force experienced is maximal at 90 degrees. This is shown visually in figure 3 and graphically in figure 4.

Figure 4. Force on the coil effected by angle of attack. A near 90 degrees angle of attack increases the force about 50%.

The angle of attack also induces a change in the thrust vector experienced by the coil, which would act as a crosswind maneuvering capability, allowing for trajectory adjustments as well as a longer launch window for the Wind Rider.

Figure 5. The angle of attack affects the thrust vector. But note the countervailing torque on the coil.

If the coil can maintain an angle of attack with respect to teh solar wind, then the Wind Rider can steer across the solar wind to some extent.

Figure 6. (left) Angle of attack, and steering angle. (right) angle of attack and the torque on the coil.

Figure 6 shows that the craft could steer up to 12 degrees away from the solar wind direction. However, maintaining that angle of attack requires a constant force to oppose the torque restoring the angle of attack to zero or 90 degrees. The coil therefore acts like a weather vane, always trying to align itself with the solar wind. To maintain the angle of attack would be difficult. Reaction wheels like those on the Kepler telescope could only act in a transient manner. Another possibility suggested is to move the center of gravity of the craft in some way. Adding booms with coils might be another solution, albeit by adding mass and complexity, undesirable for this first generation probe. Jeff Greason has an upcoming paper to be published in 2022 on theoretical navigation with possible ranges of steering capability.

In summary, the Wind Rider is an upgraded version of the Plasma Magnet propulsion concept, now applied to a reference design for 2 missions, a fast flyby of Jupiter, and an interstellar precursor mission that could reach the solar gravity lens focus. The performance of the design is primarily based on modelling and as yet there is no experimental evidence to support a finite lift/drag ratio for the craft.

Having said that, the propulsion principle and hardware necessary are not expensive, and there seems to be much interest by the AIAA. Maybe this propulsion method can finally be built, flown and evaluated. If it works as advertised, it would open up the solar system to exploration by fast, cheap robotic probes and eventually crewed ships.

References

1. Freeze, B et al Wind Rider Pathfinder Mission to Trappist-1 Solar Gravitational Lens Focal Region in 8 Years (poster at AGU – Dec 13th, 2021). https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/796237

2. Freeze, B et al Jupiter Observing Velocity Experiment (JOVE), Introduction to Wind Rider Solar Electric Propulsion Demonstrator and Science Objective.
https://baas.aas.org/pub/2021n7i314p05/release/1

3. Vulpetti, Giovanni, et al. (2008) Solar Sails: A Novel Approach to Interplanetary Travel. New York: Springer, 2008.

4. Nishida, Hiroyuki, et al. “Verification of Momentum Transfer Process on Magnetic Sail Using MHD Model.” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005.
https://doi.org/10.2514/6.2005-4463

5. Slough, J. “Plasma Magnet NASA Institute for Advanced Concepts Phase I Final Report.” 2004. http://www.niac.usra.edu/files/studies/final_report/860Slough.pdf. See Figure 2.

6. Tolley, A “The Plasma Magnet Drive: A Simple, Cheap Drive for the Solar System and Beyond” (2017).
https://www.centauri-dreams.org/2017/12/29/the-plasma-magnet-drive-a-simple-cheap-drive-for-the-solar-system-and-beyond/

7. Generous email communications with Dr. Brent Freeze in preparation of this article.

tzf_img_post

What If SETI Finds Something, Then What?

Beyond its immediate cultural and philosophical implications, the reception of a signal from another civilization will call for analysis across all academic disciplines as we try to make sense of it. Herewith a proposal for an Interstellar Communication Relay, both data repository and distribution system designed to apply worldwide resources to the problem. Author Brian McConnell is an American computer engineer who has written three technical books, two about SETI (the search for extraterrestrial intelligence), and one about electric propulsion systems for spacecraft. The latter, A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2015) has been the subject of extensive discussion on Centauri Dreams (see, for example, Brian’s A Stagecoach to the Stars, and Alex Tolley’s Spaceward Ho!). Brian has also published numerous peer reviewed scientific papers and book chapters related to SETI, and is an expert on interstellar communication systems and on translation technology. His new paper on the matter is just out.

by Brian McConnell

SETI organizations understandably focus most of their efforts on the initial step of detecting and vetting candidate signals. This work mostly involves astronomers and signal processing experts, and as such involves a fairly small group of subject matter experts.

But what if SETI succeeds in discovering an information bearing signal from another civilization? The process of analyzing and comprehending the information encoded in an extraterrestrial signal will involve a much broader community. Anyone with a computer and a hypothesis to test will be able to participate in this effort. I would wager that the most important insights will come from people who are not presently involved in SETI research. What will that process look like?

The first step following the detection of an extraterrestrial signal will be to determine if the signal is modulated to transmit information. Let’s consider the case of a pulsed laser signal that optical SETI (OSETI) instruments look for. This type of signal consists of a laser that emits very bright but very short pulses on nanosecond time scales. By transmitting very short pulses, the laser can outshine its background star while it is active, and without requiring excessive amounts of energy. OSETI detectors work by counting individual photons as they arrive. Photons from the background star will be randomly distributed over time, while the pulsed signal’s photos will arrive in tight clusters.

This type of signal can be modulated to transmit information in several ways. The duration of each pulse can be altered, as can the time interval between pulses. The transmitter can also transmit on several different wavelengths (colors) to further increase the data rate of the combined signal.

Image: Pulse interval modulation varies the delay between individual pulses.

This type of modulation will be easy to see with currently deployed OSETI detectors, so it is possible that in the case of an OSETI detection, we would also be able to extract data from the signal right away.

How much information can be encoded in an OSETI signal that is also designed to be easy to detect? We can calculate the transmission rate as follows.

Let’s work an example as follows. The signal has 20 distinct color channels and chirps on average about ten times per second. Each pulse can have a duration of 1, 2, 3 or 4 nanoseconds, and so it encodes two bits of information in the pulse width. The interval between pulses can have 256 unique values, and so it encodes 8 bits of information in the pulse interval. Plugging these numbers into the equation, we get 2,000 bits per second. While this is glacially slow compared to high speed internet connections, this works out to 172 megabits of data per day, or 21.6 megabytes per day. At this rate, the sender could transmit several thousand high resolution images per year.

The Interstellar Communication Relay, described in a recently published paper in the International Journal of Astrobiology, is a system that will be deployed in the event of a detection of an information bearing signal. It is modeled off the Deep Space Network, although it will be much less expensive to build and operate, as it will use virtualized / cloud based computing and data transfer services. The ICR will enable millions of amateur and professional researchers worldwide to obtain data extracted from an ET signal, and to participate in the analysis and comprehension effort that will follow the initial detection.

What type of information might we encounter in an alien transmission? This is anyone’s guess, and that is why it will be important to have a broad range of people and expertise represented in the message analysis and comprehension effort. Anything that can be represented in a digital format could potentially be included in a transmission.

Let’s consider images. A civilization that is capable of interstellar communication will, by definition, be proficient at astronomy and photography. Images are trivially easy to encode in a digital communication channel. Images are an interesting medium because they are easy to encode, and can represent objects and scenes on microscopic to cosmological scales. Certain types of images, such as planetary images, will be especially easy to recognize, and can be used to calibrate the decoding process on the receiver’s end.

The bitstream below is an example of what an undecoded image might look like in a raw binary stream. The receiver only needs to guess the number of pixels per row to see the image in its correct aspect ratio. This image is encoded with nine bits per pixel, with the nine bits arranged in 3×3 cells, so the undecoded image appears in its correct aspect ratio. Even before the image is decoded, it is obvious that it depicts a spheroid object against a black background, which is what a planetary image will look like,

The receiver only needs to work through a small number of parameters to decode the image successfully, and once they have learned the transmitter’s preferred encoding scheme(s), they will be able to decode arbitrarily complex images. Because planetary images have well understood properties, the receiver can also use these to calibrate the decoding algorithm, for example to implement non-linear brightness encodings.

Image: The bitstream above decoded as a grayscale (monochrome) image. Credit: NASA / Apollo 17.

What about color? Color is a physical property that will be well understood by any astronomically literate civilization. The sender can assist the receiver in decoding photographs with multiple color channels by sending photographs of mutually observable objects such as nebulae.

Image: The Cat’s Eye nebula, imaged in red, green and blue color channels.

Image: Combining these color channels yields the following image. A receiver can work out which color channels were used in an image by combining them and comparing the output against images they have taken of the same object.

Images are a good example of observables. Observables, such as images and audio, are straightforward to encode digitally. Communicating qualia, internal experiences, may be quite difficult or impossible due to the lack of shared senses and experiences, but it will be possible to communicate quite a bit through observables which, in and of themselves, may be quite interesting. Photographs from another inhabited world would surely captivate scientists and the general public.

Computer programs or algorithms are another type of information to be on the watch for. Computer programs will be useful in interstellar communication for a number of reasons. The sender can describe an interpreted programming language using a small collection of math and logic symbols. While this foundation can be quite simple, with about a dozen elemental symbols, the programs written in this language can be arbitrarily complex and possibly even intelligent.

An algorithmic communication system will have a number of advantages over static content. The programs can interact with their receivers in real-time, and thus eliminate the long delays associated with two-way communication across interstellar distances. Algorithms can also make the communication link itself more reliable, for example by implementing robust forward error correction and compression algorithms that both boost the information carrying capacity of the link, and allow transmission errors to be detected and corrected without requesting retransmission of data.

Take images as an example. Lossy compression algorithms, similar to the JPEG format, can reduce the amount of information needed to encode an image by a factor of 10:1 or more. Order of magnitude improvements like this will favor the use of algorithmic systems compared to static, uncompressed data.

These are just a couple of examples of the types of information we should be on the watch for, but the range of possible information types we may encounter is much greater than that. That’s why it will be important to draw in people representing many different areas of expertise to evaluate and understand the information conveyed by an ET signal.

The paper is McConnell, “The interstellar communication relay,” International Journal of Astrobiology 26 August 2020 (abstract).

tzf_img_post