Centauri Dreams
Imagining and Planning Interstellar Exploration
Advancing Space Technology and Preparing for Contact with Extraterrestrial Intelligence through Multilateralism
Is it possible that we can account for the Fermi paradox by looking to our own behavior as a species? Some science fiction of the 1950s pointed in that direction, as witness The Day the Earth Stood Still (1951). Dr Kelvin F Long addresses the question in terms of the ‘zoo hypothesis’ in the essay below, asking what our culture could do to make itself less threatening to any outsider. Long is an aerospace engineer, astrophysicist and author. He leads the Interstellar Research Centre, a division of Stellar Engines, which conducts research on the science and technology associated with deep space exploration. He is a Chartered Member of the Institute of Physics and a Fellow of the British Interplanetary Society. He tells me he wrote this article as a means of fundamental protest at the current conflicts engulfing humanity and as a plea to any observing ETI not to judge our species by the immorality of those who hold power over the potential of humankind. Also available on his site are two other documents pertaining to this topic: The Second Sun and Open Letter to the Permanent Members of the UN Security Council.
by Kelvin F. Long
As humanity reaches further out into the Cosmos through our long-range astronomical instruments and also robotic probes, our presence is sure to be noticed by any hypothetical extraterrestrial intelligence (ETI) that may also exist. Yet the development of our technology is not without complications given the potential dual use. Since it involves large powers and energies, this especially includes that any space propulsion machine can also be turned into a weapon. If ETI does exist then they will surely be mindful of how we use this technology and attempt to gauge whether we will bring peace and prosperity to any life in the Universe, or modes of destruction. Given this scenario, it is reasonable to consider that any civilisation that reaches a certain level will reach a point where they will be either permitted to continue in their advance outwards, or potentially face stagnation by clandestine means. It is argued that since within decades we are likely nearing this point of paradigm shift in space technology, the monitoring of our civilisation should be expected currently. In the near future we should prepare for the eventuality that we will either be greeted by intelligence from another world or forced to be restricted within a permanent zoo that constrains us to the Solar System. Preparing for this, such as through reforms of institutions like the United Nations, should be a key component of our nation state relationships through a moral and legitimate multilateral approach to problem solving, but also our exploration roadmaps.
Keywords: Extraterrestrial Contact, United Nations
Introduction
Life on planet Earth has taken many millions of years to evolve to the complex life-forms that characterise Homo sapiens with all its intelligence and associated technological tools. Yet, for centuries, astronomers have speculated [1] that it may be possible that intelligent life exists elsewhere, and this search has informed some of the motivations for our national space programs [2]. Life may have evolved from the same primordial soup and simply been transmitted from one world to another, such as during planetary collisions during the early stages of the Solar System formation, or it may have separate points of evolution that are independent from each other. A discovery of life representative of a separate biogenesis from Earth [3] would be one of the most profound moments in the history of the scientific endeavour.
This search has become more poignant in recent years since the discovery of thousands of exoplanets around other stars thanks to amazing astronomical observatories like the Hubble Space Telescope, the Kepler Space Telescope and the James Webb Space Telescope. These observatories and others that succeed them are sure to change our perspectives on models of planets, stars and life in the Universe as their sensitivity and resolution improves with each decade of technological development. In our search for planets around other stars we have discovered Hot Jupiter’s, Super Earth’s, tidally locked planets and they range in compositions from mostly iron to mostly water [4]. It seems only a matter of time where instruments like this will be able to directly image exoplanets around other stars and fully characterise their atmospheric composition and possible evidence of technological industrialisation.
In a recent article published in Nature Astronomy, Crawford and Schulze-Makuch [5] has argued that it is likely that the apparent absence of Extraterrestrial Intelligence (ETI) in our solar system might be explained by a form of zoo hypothesis [6] in action around the emerging human civilisation. They argue it is either that, or we are the only intelligence that exists in the galaxy, and possibly in the Universe. This would be unsatisfactory since it would imply a special observer position for planet Earth in contradiction to a Copernican principle of cosmology.
Fundamental to the arguments regarding life visiting our solar system is the Fermi paradox, which asserts that there is a contradiction between our theoretical expectations for intelligent life emerging in the Universe and our apparent lack of observations to confirm it has indeed done so. The calculation for such a prediction is based on the number of galaxies, stars, and planets, their measured ages and spectral types when compared to the solar system from which we originate. From a statistical basis, a calculation of probability suggests that we are not special but perhaps typical of an average system that might evolve.
Even if a zoo containment policy was not in action by ETI around our solar system, assuming they exist, they would be wise to at least monitor our activity. In the future it is possible that we will send a robotic probe towards the planets of another star. Since the average distance between stars is 5 light years, any flyby probe crossing this distance in less than a century, would have a velocity of order 0.05c or 15,000 km/s which would have significant kinetic energy associated with its motion.
The Trinity nuclear test in July 1945 had an associated yield of 25 kilotons TNT equivalent, or around 100 TJ. An object with this energy travelling at a speed of 0.05c would only have to have a mass of around ~1 kg. A much larger mass, let’s say of order 1 ton, for the same velocity would have an associated energy of 112,300 TJ or approximately 26,900 ktons TNT equivalent which is around 1,100 Trinity events. Therefore, any probes sent from our solar system towards a potential habitable exoplanet would be of grave concern to any observing ETI. If a probe is able to be decelerated into orbital velocity this may put at rest some concerns and reassure its scientific nature, but before any deceleration takes place the probe would first travel the majority of the distance at the determined cruise velocity and therefore still require careful scrutiny of its intention and trajectory.
Reversing roles, if we detected an emerging species from a nearby star system that also appeared to be technological, in terms of them maturing to an advanced space capability we might also wish to characterise the threat level. Borrowing ideas from how such threats are categorised by nation states we might determine as: Green: Low threat, intention appears to be benign; Amber: Moderate, intention appears benign but advise caution subject to more data; Red: High threat, actions by ETI indicate a threat to humanity is likely. Indeed, we were potentially treated to such an opportunity in 2017 with the arrival of the interstellar asteroid ‘Omuamua, the nature of which remains controversial today [7].
An analogy for ETI observing humanity’s technological developments is the allied monitoring of German nuclear experiments during World War II. Particularly after 1938 when Otto Hahn first discovered nuclear fission and the creation of the ‘Uranium club’ to investigate the military benefits of a nuclear chain reaction. This effort by Germany prompted the creation of the Manhattan project in the United States, to construct the world’s first atomic bomb. Clearly Germany was seen as a significant global threat at the time.
The problem with any such categories is that threats come in many forms and can be intentional or unintentional. In addition, it is difficult to assess the impact on the development of a society by simply exposing them to a simple piece of knowledge or a technology. This has been well recognised by our own society since at least the 1960s with the publication of the Brookings Institution report which stated: “Certain potential products or consequences of space activities imply such a degree of change in world conditions that it would be unprofitable within the purview of this report to propose research on them. Examples include a controlled thermonuclear fusion rocket power source and face to face meetings with extraterrestrials” [8].
Imagine for example, if we went back in time and communicated to Stone Age people that stars were other suns. That innocent piece of information may have profound implications on social-cultural development and give rise to new philosophies. Alternatively, imagine if we gave them an item as innocent as a single wood nail. What inspiration and technological spin-offs would that promote now that they had been exposed to the broader possibilities?
In his famous physics lecture serious the physicist Richard Feynman imagined that there was a cataclysm and all scientific knowledge was lost or destroyed and he asked what one sentence would you want to be passed onto the next generation so that they could build up science and civilisation again. He opinioned that it was the “atomic fact, that all things are made of atoms…In that one sentence, you will see, there is an enormous amount of information about the world, if just a little imagination and thinking are applied” [9].
Now imagine that if ETI was to come here in a spacecraft propelled by technology which, to quote Arthur C Clarke, appeared to be “indistinguishable from magic” [10] to our eyes, since it was based on principles of physics we were yet to discover. It’s possible they would share that technology with us, but even if they didn’t, we might attempt to steal it. Alternatively, even if they refuse to discuss it, now that we have seen it, it will promote research programs in our society that one day leads to its maturation. In other words, the mere seeing of a new phenomenon is enough to spark interest from a curious species that may lead to its eventual creation here. A few years ago, this idea was suggested as a physics postulate by this author where “No information can be contained in any system indefinitely” [11].
In the television series Star Trek they codified these sentiments into an effective Prime Directive [12]. For this reason, any ETI would be concerned about contaminating our species with knowledge or technology and this would be a prudent reason to keep at a distance. Yet also, if they decide we have hostile tendencies as a part of our nature, they would be mindful not to give us any advantage scientifically which could accelerate our development and so increase the potential threat to them.
In general, it would be prudent to speculate when might ETI be most concerned about a human presence in space and therefore warrant actions to mitigate our excess and reach? Since our progress in space is primarily driven by our technological capacity, our advance with science and engineering machines would be of primary importance and at some point, we would reach a peak of maximum interest and therefore a decision point upon which to take actions over our continued activities in space. This is arguably becoming more important since our technological level is rapidly approaching the point where interstellar missions may become possible in future generations since the science case for making the journey is compelling [13].
Indeed, this author has previously estimated that if there are any ETI civilizations within 200 light years distance then first contact may potentially occur any time in the next 100 – 200 years [14]. This is on the basis that technology advances at a certain pace of generations with increasing levels of performance, to eventually maturate to the required level to achieve a given mission over a set distance at a minimum cruise speed. For example, a mission to the nearest star Proxima Centauri at 4.3 light years in 100 years trip time would require a cruise speed of 0.05c, which is a factor ~150 times what we could do in space today with our most advanced propulsion technology, which suggests at least two orders of magnitude improvement required in our current technological state of art before the interstellar mission becomes feasible.
Detecting Emissions
The evidence to support or refute any solutions to the Fermi Paradox by long-range observations depend on our ability to detect emissions from deep space that might demonstrate technology use, such as through deliberate communication transmissions or on accidental release of power and propulsion signatures that might indicate an ETI presence. The detection of emission signatures from space as potential evidence for ETI has been discussed extensively by the astronomer Carl Sagan [15].
Historically all efforts towards the Search for Extraterrestrial Intelligence (SETI) have been focussed on the detection of transmitted radio communications. One of the factors that has influenced this program is the previously believed position that messaging through radio waves (or lasers) is cheaper when compared to sending reconnaissance probes [16], but this is no longer necessarily the case thanks to innovative programs like the Breakthrough Initiatives Project Starshot [17].
In recent years however the perspective on messaging is changing and there is an increased emphasis of technosignatures [18]. This is especially important since the power spectrum emissions of any propulsion technology would likely be several orders of magnitude higher than any transmitted communication signals through radio waves [19].
Since astronomers rely on the detection of natural astrophysical emissions to inform their physical models, it follows that any artificial emissions would also be detected by those same astronomers, so that they could be analysed for either their natural or artificial nature. Therefore, to contain human civilization, to include our awareness of an ETI presence in the galaxy, any artificial emissions coming towards our solar system would have to be filtered by them before arriving at our detectors.
Any filtering would also have to span an enormous range. Diffuse hard x-ray emission from the gas giant Jupiter has been measured at 3.3×1015 erg/s [20]. A recently discovered supergiant x-ray transient XTE J1739-302 was measured with a luminosity or radiated power of 1036 erg/s [21]. A typical supernova at its maximum brightness might have a luminosity exceeding 1043 erg/s, which is a billion times that of the Sun in our own solar system. A Black Hole binary reached a peak gravitational wave luminosity of 3.6×1056 erg/s [22].
The power spectrum from an advanced propulsion fusion engine might be characterised by around 1022 erg/s which would correspond to around 1015 W propulsion jet power, appropriate for a vehicle motion in the range 0.1-0.15c [23]. There are in fact a range of ideas for space propulsion that have been proposed in the literature, from sails to beamers [24], fusion [25] to antimatter [26], relativistic ramjets [27] to space-drives [28], Unruh radiation drives [29] and other methods [30, 31]. To make significant progress, research is required on all of the physics and engineering concepts derived by human imagination and then appropriate links to physics effects in order to estimate the range of emission properties. This includes going beyond known physics and even into the speculative fields of space-time drives or warp drive [32] and wormholes [33], using the tools of General Relativity theory.
How do we distinguish in our models between the discovery of a new astrophysical object and the spectrum from an artificial source such as a power and propulsion technology indicative of industrialisation by ETI? Our interpretation of any data depends strongly on the accuracy of our scientific models to describe physical phenomena in astrophysics but also the physics and engineering of advanced spacecraft machines and how they operate [34].
If a zoo containment policy of our solar system and humanity were in place by ETI, then this raises the question of how this would be practically policed, and a basic analysis of the requirements suggest that it would in fact appear to be rather impractical. Indeed, if we imagine a containment zone around our solar system that was a hollow sphere of radius 100 Astronomical Units, this will have a shell volume of ~2.81×1029 m3.
If we then assumed that any artificial megastructure that made up this filtering material was only 100 m in thickness and assumed a light but smart microporous and transparent optically thin material, perhaps similar to silica aerogel, with an average density of 20 kg/m3, which can survive in space environments whilst maintaining its strength. This then would require a perimeter shell mass of around ~5.62×1030 kg which is approximately ~3 times the mass of our own sun. It would also be noticed gravitationally since it would influence the planetary orbits, and it would need an ability to self-adjust its position to prevent drift.
The use of any material density beyond the one assumed here, such as for metals, would significantly increase the megastructure mass of such a perimeter. If such a material was acting as an emissions filter, the internal matrix of the substance would have to be designed in some way to block out artificial signatures but permit the transmissibility of natural signatures from astrophysical sources to not alert us to the strategy in operation.
In addition, since the presence of our civilization is continually increasing through our robotic probes, the diameter of the wall must be enlarged periodically or altered in some way which may require in-situ management. But then if it is allowed to expand what would be the limit of the containment policy? The barrier would also have to be dynamically operable to allow the passage of long-period comets on eccentric orbits or interstellar objects like ‘Oumuamua [35] and 2I/Borisov [36] to get through and enter our solar system. Instead, perhaps their arrival itself represents evidence that falsifies a containment barrier?
The shell would also have to have a temperature less than the 2.72 K cosmic background microwave radiation, and probably close to 0 K, to prevent its detection through thermal imagers, and so that it did not absorb any energy from its surroundings due to its high transparency. Since it surrounds a star, there is a risk of it trapping the energy from that star in a manner similar to a Dyson sphere, and so any energy passing through it from the star could not undergo attenuation and must be fully transmissible. We might refer to this as a Kelvin shell due to its thermodynamic constraints. It would be manifest of a perfect crystalline material with minimal amorphous material inclusions.
Currently, the Voyager probes launched in 1977 are at a distance of 136 AU for Voyager 2 and 165 AU for Voyager 1 respectively. Since they have apparently been allowed to pass well beyond the 100 AU distance of our solar heliosphere and are also still transmitting science data to the Deep Space Network, this implies that if any such containment wall were in place, it would have to be much further out, and perhaps well into the Oort Cloud. This would then allow for another century or so of human expansion into space as our probes become more sophisticated technologically.
The above physics and engineering requirements illustrate why zoo containment via a physical shell would be problematic and at first glance it could be argued that the lack of finding such a structure may be seen as a partial falsification of the zoo hypothesis. Clearly this would be a project for an advanced technological civilization that goes way beyond the current state of art for human technological maturity and likely implies a high Kardashev level [37] to construct such a large megastructure if indeed it were ever possible.
Alternatively, there is no containment wall and instead it is an artificial boundary that is in some way policed by ETI probes to monitor what we send out there. But then this does not solve the problem of how to prevent us from detecting the presence of ETI in deep space through our astronomical observatories; unless their cloaking and propulsion technology is so advanced that it is beyond our present comprehension. For example, they could have an ability to dampen electromagnetic and gravitational waves as they move across the Cosmos and head towards us; although it is difficult to imagine how this would be completely impermeable. Overall, this implies a contradiction in our understanding and logic for how we are framing the Fermi Paradox within a zoo hypothesis.
It is possible that ETI exists in abundance, but they have made a joint decision not to engage with humanity or to release evidence of their existence and so this results in a null contact. They continue to remain in a stealth mode and do not share any information with us and only keep us under continued observation for their own security. But the technology used in their engines would have to be based on principles so advanced of our science that emissions such as due to electromagnetic waves would not occur.
In effect such an advanced society would be operating a strategy similar to the Planetarium Hypothesis [38] suggested by the science fiction writer Stephen Baxter where external reality is engineered and all we see a form of illusion. Intelligent extraterrestrial life may be in abundance but all signs of it are hidden from our gaze.
On the assumption that some form of containment policy did exist, from our perspective this might manifest itself in the continued failure of our technology programs which aim to achieve far reaching science goals. The sabotage of our technological advancement was explored in the novel The Three-Body Problem written by Liu Cixin [39]. We may get to a point of constructing an interstellar probe for example, but they will never go beyond a certain speed making journey times too long, or they will simply fail in their mission in deep space away from our ability to observe any sabotage of our vehicles.
After many attempts at trying to cross the interstellar void, and presumably at large economic cost, pressure would build on political systems to cease the attempt in the interest of other priorities. In addition, this would also lead to a belief among humanity that interstellar flight is simply not possible since the challenge is too great. A full stagnation of our technology programs past a certain containment zone in space would have been achieved and we may be none the wiser.
We can make preparations to test the existence of a containment zone by equipping our space probes with the appropriate technology and instrumentation sensors to pick up any deep space objects or interference in our probes. Just recently the Voyager 1 mission experienced a major computer malfunction [40], which after months of effort was fixed by designers at the Jet Propulsion Laboratory by uploading corrective programming. The error was put down to a faulty chip and was likely due to the increased cosmic ray flux as the probe goes further out into the interstellar medium and away from the protection of the solar heliosphere magnetic field. Yet, if there were interference in the probe, how would we know the difference or if indeed it has happened already? [41]. These sorts of issues need to be discussed by mission planners in parallel with planning for post-Voyager missions which have been proposed [42, 43, 44].
Breaking out of the Zoo
The U.S President Ronald Reagan recognised the potential impact of an ETI presence in a speech to the United Nations General Assembly in September 1987 in which he said “I occasionally think how quickly our differences worldwide would vanish if we were facing an alien threat from outside this world” [45]. In his speech he was emphasising how much unites the different groups of humanity rather than what makes us different. An imagined alien threat may have been somewhat over dramatized, but the point is still well made, that our disunion is not just a threat to them, but also to ourselves in creating a just and harmonious society. Indeed, this might be precisely what ETI is waiting for, before any meaningful level of inter-species dialogue can take place between two distinct and original interstellar species.
There is a simpler way to break out of any hypothetical zoo and it is one for which all nations of the world should take notice. If it was the case that there are many intelligent technological civilizations out there, but they choose to contain us, perhaps we should instead seek a path of humility and realise that it is highly improbable that we have more wisdom that the collective minds of many vast civilizations that may have existed for millions of years. Perhaps then this should be a prompt for us to look in the mirror at who we are as a species and who we want to become. To conduct ourselves in a manner that would not invite such a containment policy.
Recently, Western nation’s commemorated eighty years since the Normandy invasion of Europe during World War II and the many brave lives lost in the attempt to secure Europe from the grip of Nazi Germany. A mere two decades prior to this was World War I; the supposed war to end all wars. Looking at the world today in 2024, have we changed that much? For all our technological progress and the great truths uncovered by scientific discovery, isn’t our nature fundamentally the same as it always was? A diverse humanity in conflict with each other. This may simply be a result of our evolution through natural selection and undoing millions of years of our nature may not be a trivial undertaking.
We attempted some progress towards a more peaceful union in the construction of the United Nations in 1945 following World War II, and before that the League of Nations following World War I. At the United Nations, this is where all countries can at least sit at a table together and talk through differences without resorting to conflict. But is this institution working? How many conflicts rage around the world today, where it remains impotent to intervene? The United Nations was a good idea, but it clearly needs fundamental reform.
In issue 48 of The Federalist Papers written by James Madison in 1788, he makes a thought-provoking suggestion: “Happy would it be if such a remedy…could be enjoyed by all free governments; if a project equally effectual could be established for the universal peace of mankind” [46]. Whilst adopting a Federalist system for the whole world may be a step too far at this time, perhaps we can at least strive to increase our democratic union.
There may be another way in which the United Nations can be reformed and could lay the foundations for a more peaceful union that is also democratic, whilst also recognising the sovereignty of individual nation states. That is to address Article 27 of the United Nations Charter where “Each member of the Security Council shall have one vote” [47], for a two-thirds majority, and yet only certain states are given the power of a veto. These are the permanent members who include the United States, United Kingdom, France, Russia and China, all of which also happen to be nuclear armed states.
Historically, when a conflict continues with the loss of much civilian life despite attempts at resolutions by members of the United Nations, one can find evidence of a veto by one of these permanent members. As of spring 2024 the veto has been used a total of 277 times. This is split into 128 (Russia), 85 (United States), 29 (United Kingdom), 19 (China) and 16 (France) [48, 49]. How many conflicts could have been avoided if the veto power was not there?
Removing the veto power of permanent members and allowing each nation to have one vote may be the only way to fully achieve a democratic union of all countries in the world, whilst also protecting individual nation state sovereignty and preventing the homogenisation of a diverse set of rich human cultures, where diversity should also be seen as a factor in generating maximum creativity for problem solving. However, given the very different population sizes of countries some mechanism would be needed to ensure proportional representation. This might be in a manner similar to the method used by the United States Congress where all states have equal representation in the Senate but a proportional representation in the House of Representatives.
Even if a direct removal of this power is not feasible, perhaps there are variations on this idea which might be adopted as an alternative. This might include for example that with the five permanent members, for any veto to be carried forward it must have a majority among those five members, which means three against and two for any resolutions proposed by members. That would at least represent some progress towards a more cohesive union and dilute the right of any one nation to act on its own and prevent the will of a majority.
Is it reasonable that a single member of an institution which has 193 members in total has the power to prevent a resolution by a majority of the other representative? Indeed, this is manifest of Empire building and gives permission for unilateral actions of one state against another; the likes of which has so defined the last century of conflicts.
Instead of removing the veto it could be argued that it should be expanded to include more members, but this was already tried in the original League of Nations, where at one point the League Council included 15 countries with veto power and where it was difficult for decisions to be made on any complex issues. If the veto power is removed entirely from all nations, this would create a much more democratic process and arguably create the conditions for increased problem solving as nation states are forced to negotiate a settlement.
Whilst the veto allows states to act in their own sovereign rights and best national interests, removing it would force more of a consideration for international best interests and taking a broader view of humanity as one people. Is it not time to consider that adherence to a charter of rules-based order is more important than a principle of unanimty? Indeed, this may also be a pathway towards a more democratic union along the lines of the principle of subsidiarity at a local nation state level, but enhanced co-operation at a global level among civilised nations seeking to address common problems on the planet.
For sure removing the veto would come with consequences, particularly to those permanent members. Yet it would prevent for example the attack on one country by another without a much broader coalition agreement.
Where is the moral leadership on planet Earth today? It is certainly not being provided by any of the existing permanent members. Where are the grown-ups demanding people put their weapons down and break bread? This also highlights the ineffectiveness of the world’s religions, powerless to intervene, and lacking in courage to protect those caught in the middle of global conflicts. If any moral code laid down to the people of Earth should prompt them into action, “Thou shalt not kill” is certainly one of them. Yet, no definitive and unambiguous call towards peace is made by the leaders of these religions.
It should not be assumed that the conduct of these nations is not being observed closely with long term consequences to how our species will be permitted to advance, or even stagnated towards extinction in the interest of a higher principle than any for which we are currently aware.
In general, in the modern integrated geopolitical world, it should be harder to take unilateral action by one state against another, and when action is required, it should involve a multilateral approach. This would prevent the excesses of one dominant party against another, but also the moderation caused by the other members would result in a more reasonable approach to problem solving that represents a consensus position. For sure, such a decision would take a significant amount of courage and trust by the permanent members, but perhaps that is the bridge that must be crossed if our world is to become unified.
It has been argued that removing the veto would lead to the withdrawal of the permanent member states since they can no longer defend their security interests [50]. This may be so, but nations cannot have it both ways, they either want to exist in isolation or construct a harmonious existence with other nations, consistent with a peaceful and prosperous future for planet Earth. Faced with the potential contact with ETI in the near future, we should ask ourselves what arrangement would facilitate a better contact scenario? One where ETI is expected to engage in dialogue with 193 separate entities, or one where it engages with a representative body for which all nations have influence?
Imagine if the roles were reversed, and ETI came to our planet, but they came in 193 different missions representing that many different societies among their civilisations. How confusing would we find that? What would it say about their own societies lack of cohesion to give us pause for concern in reaching any agreements?
This all points towards a requirement for radical reforms in the governance model and how its various missions are executed and monitored. After all, for those permanent members that would oppose a removal of the veto, this sort of conduct gives their argument legitimacy. The primary function of the United Nations should be to prevent conflict, broker peace settlements, protect the innocent and help to create the conditions for a more prosperous human condition on this planet Earth.
That said, it is acknowledged that in removing the veto this potentially creates the conditions for a different type of geopolitical environment, where countries now attempt to ‘buy’ others votes by the promising of large infrastructure investment projects that would benefit their society. A form of nation state barter if you like. It would all need careful consideration.
The author also acknowledges that his own understanding for how the United Nations operates may be somewhat naive, and in fact the veto may be acting as a form of linchpin on the entire geopolitical diplomacy effort. To remove it may lead to unstable conditions which are difficult to predict. Nobody is a true predictor of the possible futures that may unfold. Yet, it must also be acknowledged that the existing system is not working.
To emphasise some of the positive achievements of the United Nations, in 2005 a study by the RAND corporation [51] concluded that the United Nations provides the most suitable institutional framework for nation building missions, with an emphasis on a comparatively low-cost structure and success rate, and the one with the greatest degree of international legitimacy. It is also a champion of human dignity through the Universal Declaration of Human Rights, first adopted in 1948.
Currently there is a campaign for a United Nations Parliamentary Assembly as a global network of parliamentarians, non-governmental organizations, scholars and citizens that advocate for democratic representation and an influence over global policy [52]. To date 137 nations have so far endorsed the idea. Such a suggestion might go some way to addressing some of the existing problems, but it depends on whether it has any actual power to influence resolutions.
In terms of our activities in outer space Crawford [53] proposed that a World Space Agency is required, possibly acting under the auspices of a federal world government. If the International Space Station in Low Earth Orbit has achieved one thing it has been demonstrating that different nations around the world can co-operate together behind a shared scientific exploration endeavour. This serves as a beacon of hope for what may be possible when we work together, and especially as humanity begins a new age of space exploration in the settlement of the Moon and Mars.
It is likely that significant reforms to our multilateral institutions would be difficult to implement if there is no will do so. Yet, let us not pretend then that the United Nations represents any form of democracy in action. Although the Charter states the words “We the Peoples of the United Nations” [47] the reality is that it has presided over the DisUnited Nations and continued conflict in international affairs. Until we are prepared as a global community to make the changes required to our governing institutions that leads to a more just world, it may be that for any observing ETI we are considered a threat that is to be contained.
A Cosmic Perspective
This is a planet that is spinning through space suspended in a dance of gravity around the Sun, itself spiralling around the Milky Way galaxy, a mere speck of dust in a vast and infinite universe. As we look at our world, we should be reminded of the words of Carl Sagan who said “Our posturings, our imagined self-importance, the delusion that we have some privileged position in the Universe, are challenged by this point of pale light”. He continued “To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we’ve ever known” [54].
As discussed by Deardorff [55] the motivation for any type of containment may be for protecting any existing ETI civilizations from the aggressive tendencies of other emerging species. Any society that exhibits such characteristics will also become self-destructive and so it would be a sensible policy of ETI to not interfere in the development of emerging societies until they can at least demonstrate they can get over this phase of their development and achieve a state of peaceful cooperation with others. If they do become destructive then this would only serve to illustrate their unfitness to join a broader collective.
In the 1951 science fiction film The Day the Earth Stood Still, the alien visitor Klaatu gives a speech to the world. He refers to the creation of a galactic police force of robots that have absolute power over hostile life-forms, but where the conditions are created where civilizations can exist free from aggression and war, free to pursue more profitable enterprises. Klaatu states “It is no concern of ours how you run your own planet, but if you threaten to extend your violence this Earth of yours will be reduced to a burned out cinder” [56]. How would we change if we were really faced with such an ultimatum from outside?
Arthur C Clarke explores this in his 1953 novel Childhood’s End [57] when an alien race known as the Overlords descend to Earth and set about changing it. This includes the creation of a new World Federation using the United Nations to create a golden age of prosperity. Yet, for the humans in the story things do not end well as they eventually say goodbye to their children. When the aliens reveal themselves to humankind, they coincidently have the appearance of the devil, highlighting the illogical prejudice of our species.
In 2023 the United States Congress House Oversight Subcommittee held hearings [58] on the claims of pilots and former federal employees that unidentified anomalous phenomena (UAP) have been seen flying through our atmosphere today. It is interesting to note, following this saga on the social networks since, the suggestion of a spiritual component to the phenomena is being raised by some, with any potential ETI not being seen as our brothers and sisters among the stars, but rather as angels and demons.
Recently, the Vatican has released a document with new guidelines on the norms for discerning alleged supernatural phenomena [59]. Although the supernatural phenomena of interest to the Catholic Church is multi-varied as miracles, they also include the possible of ETI as divine apparitions.
It is these kinds of speculations which have a propensity to cause disharmony in human relationships and prevent our species from indeed achieving childhoods end. One must wonder what Carl Sagan would have thought about all this when he wrote his 1995 book The Demon-Haunted World [60] in an apparent reference to the irrationality of human thinking. Heaven and Hell do exist, and they exist simultaneously here on Earth today, manifest of our actions or inactions and “With our thoughts we create the world” [61].
In 1945 atomic bombs were dropped on the Japanese cities of Hiroshima and Nagasaki and with the hundreds of thousands of deaths that followed certainly hell on Earth existed for them. Today, in our world of global conflicts there exists over 13,000 nuclear warheads in stockpiles around the world which have a combined energy of around 4,000 Mtons TNT equivalent. Asteroids will hit the Earth with a velocity of between 18 – 30 km/s depending on their origin. Assuming such a spherical object was made entirely of Iron with a density of 7,890 kg/m3, with this total energy it would have a diameter of around ~200-300 m across – equivalent to several football sized fields and where the environmental consequences of such an impact would be devastating.
Depending on the impact angle, ground target density and material, the impact would make a crater perhaps as large as 10 km in diameter and generate global environmental effects that are too profound to consider. In the distant future a new intelligence species may evolve on Earth and they would find themselves studying the fossilized remains of Homo Sapiens the way that we study the dinosaurs that disappeared 66 million years ago.
Given the conflicts that still rage around our planet, it is nothing short of insanity that we risk escalation where a new extinction level event presents a real and present danger as an existential threat to our species. If the United Nations is to have a function, it surely must be to prevent such a scenario as this from ever happening, and if it does happen, we can surely point to the Permanent Members as complicit in humanity’s destruction.
The Permanent Members of the United Nations are a result of winning World War II and they have helped to create the modern world that we live in and the periods of stability that we do enjoy. Yet they are also creating the conditions for instability by their conduct in the world and the constant wars, imposed ideologies and atrocities as crimes against humanity. Instead, imagine a future where instead of fighting each other, they were working towards a peaceful co-existence on Earth and in space; as they have done in the exploration of Antarctica and with the International Space Station. Imagine a future where we were building colonies on the Moon, the first cities on Mars, exploring the outer planets and beyond. What new discoveries await us as a grand prize in those undiscovered lands of hope?
Although it cannot be proven, it is possible that the Cosmos has a fundamental qualification for becoming a part of it instead of just being constrained to one planetary biosphere. Those that engage in disunion, conflict and war are not welcome among the intelligent life forms so natural to the stars. For those that engage in peaceful co-operation with each other and construct a union among a civilised people who value creativity, imagination and compassion to each other, even infinity defines no boundary to what may be achieved.
Perhaps only when we step up and recognise the changes that are required within ourselves, will ETI be prepared to fully engage with us. A global multilateral institution like the United Nations is clearly a primary candidate for such change, and if is not, then it is at least complicit in the disharmony of our world. Until then, like animals in a zoo, the broader truths of the wider universe may forever be hidden from our gaze.
Summary
The possible discovery of ETI is one of the most exciting pursuits of the scientific endeavour which will also have profound implications for our social-culture and our understanding of the Cosmos. Yet, whilst we search with enthusiasm for them, we should not be so sure that they are also keen to meet us. This is due to our nature and the tendency to construct technologies which can be used for the purpose of destruction rather than creation. This would be of grave concern to any ETI that exists in our galaxy which values self-preservation and life.
On the assumption that they do exist, and they also have concerns about us, we have speculated on the possibility that a zoo containment policy may be in place around our solar system and surrounding nearby space. Although we have also suggested that a physical containment zoo would be impractical to implement.
To ensure that containment, it may be necessary for ETI to take direct actions to limit our technology growth or the reach of that technology into deep space. This could be through methods of sabotage or other clandestine operations hidden from our view that ultimately result in the moderation of our capability to go further and faster. As President Reagan once said “Perhaps we need some outside, universal threat to make us recognize this common bond” [45]. Yet, they may already be here, and we would be extremely wise to pause and take notice. Benford has suggested that perhaps we should be looking for ETI lurkers within our own solar system and this idea has merit [62].
Since humanity is now reaching a point where certainly missions that travel at speeds of 100 km/s are possible today, and much higher speeds of order 1,000s km/s appear possible towards the end of this century, it would be prudent for us to build protection mechanisms into our space probes to detect the presence of ETI or their attempts to interfere in our space probes. This might include booby-traps in our software programming, or technology sensors which can detect their presence. Whilst this possibility may seem fantastic, this would be the most sensible way to test if a zoo hypothesis containment policy were in action around our solar system.
Meanwhile, it would be a sensible policy to encourage the better angels of our nature and maintain the bonds of affection between nations that are so essential to a peace-loving society which promotes compassion and wisdom as the defining characteristics of what it means to be a human being in a vast and expanding Cosmos, where we may not be alone. As the great scientist Albert Einstein said “Our task must be to free ourselves from this prison by widening our circle of compassion to embrace all living creatures and the whole of nature in its beauty” [63].
Any change is likely to necessitate fundamental reforms to our existing multilateral institutions. It is also likely to require the emergence of a new and inspirational moral leadership class that is currently in abeyance. It could be argued that the lack of moral leadership creates the conditions for global conflict and disunion among an otherwise peaceful people. In relation to space, it should certainly be our task “to avoid the extension of present national rivalries into this new field” [64].
Ultimately, the nations of the world must decide “whether societies of men are really capable or not, of establishing good government from reflection and choice, or whether they are forever destined to depend, for their political constitutions, on accident and force” [65]. A change to the status quo at the United Nations may be the only hope for humanity as we look out upon the precipice of either our fate or our destiny. One of these futures is waiting for us.
References
[1] G. Bruno, “On the Infinite Universe and Worlds” (L’infinito universo e mondi), 1584.
[2] NASA Strategic Plan 2022, NPD 1001.0D, https://www.nasa.gov/wp-content/uploads/2023/09/fy-22-strategic-plan-1.pdf?emrc=ff1a1e
[3] P. Davis, “The Origin of Life”, Penguin Science, 2003.
[4] Z. Budrikis, 30 Years of Exoplanet Detections, Nature Reviews Physics, 4, 290, 13 April 2022.
[5] I. A. Crawford, D. Schulze-Makuch, “Is the Apparent Absence of Extraterrestrial Technological Civilizations Down to the Zoo Hypothesis or Nothing?”, Nature Astronomy, 8, 44-49, January 2024.
[6] J. A. Ball, “The Zoo Hypothesis”, Icarus, 19(3), 347-349, July 1973.
[7] A. Loeb, “Extraterrestrial: The First Sign of Intelligent Life Beyond Earth”, Mariner Books, 2022.
[8] D. N. Michael, “Proposed Studies on the Implications of Peaceful Space Activities for Human Affairs”, A Report Prepared for the Committee on Long-Range Studies of the NASA, by the Brookings Institution, December 1960.
[9] R. P. Feynman, R. B. Leighton, M. Sands, “The Feynman Lectures on Physics”, Volume 1, 1-2, Addison-Wesley Publishing Company, 1963.
[10] A. C. Clarke, “Profiles of the Future”, Originally published 1962, Gateway, 2013.
[11] K. F. Long, “Unstable Equilibrium Hypothesis: A Consideration of Ultra-Relativistic and Faster Than Light Interstellar Spaceflight”, JBIS, 69, 97-101, 2016.
[12] S. E. Whitfield, G. Roddenberry, “The Making of Star Trek”, Ballantine Books, 1968.
[13] I. A. Crawford, “The Astronomical, Astrobiological and Planetary Science Case for Interstellar Spaceflight”, JBIS, 62(11/12), 415-421, November/December 2009.
[14] K. F. Long, “The Temporal Contact Equation: An Estimate for the Time of First Contact with ETI”, JBIS, 76(11), 279-282, November 2023.
[15] C. Sagan, “On the detectivity of Advanced Galactic Civilizations”, Icarus, 19(3), 350-352, July 1973.
[16] B. M. Oliver, “Project Cyclops Study: Conclusions and Recommendations”, Icarus, 19(3), 425-428, July 1973.
[17] K L G Parkin, “The Breakthrough Starshot System Model”, Acta Astronautica, 152, 370-384, November 2018
[18] J. Wright, “NASA and the Search for Technosignatures”, A Report from the NASA Technosignatures Workshop, Houston, Texas, 26-28 September, 2018.
[19] R. Zubrin, “Detection of Extraterrestrial Civilizations via the Spectral Signature of Advanced Interstellar Spacecraft”, Progress in the Search for Extraterrestrial Life ASP Conference Series, Edited by G. Seth Shostak, 74, 1995.
[20] Y. Ezoe, K. Ishikawa, T. Ohashi, Y. Miyoshi, N. Terada, Y. Uchiyama, H. Negoro, “Discovery of Diffuse Hard X-Ray Emission around Jupiter with Suzuku”, The Astrophysical Journal Letters, 709, L178-L182, 1 February 2010.
[21] D. M. Smith, W. A. Heindl, C. B. Markwardt, J. H. Swank, I. Negueruela, T. E. Harrison, L. Huss, “XTE J1739-302 as a Supergiant Fast X-Ray Transient”, The Astrophysical Journal, 638, 974-981, 20 February 2006.
[22] B. P. Abbot, “Observation of Gravitational Waves from a Binary Black Hole Merger”, Physical Review Letters, 116, 061102, 2016.
[23] K. F. Long, “A Case Study in Characterising Nuclear Propulsion Emission Signatures from Astrophysical Sources”, JBIS, 77(6), 2-15, June 2024.
[24] P. A. Lubin, “A Roadmap to Interstellar Flight”, JBIS, 69(2/3), 40-72, February/March 2016.
[25] A. Bond, A. R. Martin, “Project Daedalus: The Mission Profile”, Final Study Report, JBIS, Special Supplement, S37-S42, 1978.
[26] G. P. Jackson, “Antimatter-Based Propulsion for Exoplanet Exploration”, Nuclear Technology, 208, S107-S112, January 2022.
[27] C. Sagan, “Direct Contact Among Galactic Civilisations by Relativistic Interstellar Spaceflight”, Planet.Space Sci, 11, 1963.
[28] M. Millis, E. W. Davis, “Frontiers of Propulsion Science”, Progress in Astronautics and Aeronautics, 227, AIAA, 2009.
[29] M. McCulloch, “Quantised Accelerations, From Anomalies to New Physics”, Polaris Books, 2024.
[30] E. Mallove, E., Matloff, G., “The Starflight Handbook, A Pioneer’s Guide to Interstellar Travel”, John Wiley & Sons Inc, 1989.
[31] K. F. Long, “Deep Space Propulsion, A Roadmap to Interstellar Flight”, Springer, 2011.
[32] M. Alcubierre, “The Warp Drive: Hyper-Fast Travel within General Relativity”, Class Quantum Gravity, 11, L73-L77, 1994.
[33] D. Torres et al., “Chromaticity Effects in Microlensing by Wormholes”, Mod. Phys. Lett, A16, 973-984, 2001.
[34] D. R. J. Viewing, C. Horswell, E. W. Palmer, “Detection of Starships”, JBIS, 30, 99-104, 1977.
[35] A. Fitzsimmons., C. Snodrass, B. Rozitis, B. Yang, M. Hyland, T. Seccull, M. T. Bannister, W. C. Fraser, R. Jedicke, P. Lacerda, Spectroscopy and Thermal Modelling of the First Interstellar Object 1I/2017 U1 ‘Oumuamua, Nature Astronomy, 2, 133-137, 2018.
[36] D. Jewitt, J. Luu, Initial Characterization of Interstellar Comet 2I/2019 Q4 (Borisov), The Astrophysical Journal Letters, 886(2), L29, November 2019.
[37] N. S. Kardashev, “Transmission of Information by Extraterrestrial Civilizations”, Soviet Astronomy AJ, 8(2), September-October 1964.
[38] S. Baxter, “The Planetarium Hypothesis: A Resolution of the Fermi Paradox”, JBIS, 54(5/6), 210-216, 2001.
[39] L. Cixin, “The Three-Body Problem”, Chongqing Press, 2008.
[40] N. Hartono, “NASA Engineers Make Progress Toward Understanding Voyager 1 Issue”, NASA/JPL News, 15 March 2024.
https://voyager.jpl.nasa.gov/news/
[41] K. F. Long, “In the Hypothetical Scenario of an Interception of the Voyagers by an ETI Probe”, JBIS, 77(6), June 2024.
[42] S. Abdolrahimi, B. Yale, C. C. Tzounis, J. Fofrich, P. Rohan, J. Cabrera-Guzman, J. C. Welsher, N. Nakhjiri, D. Scott, A. Johnson, “Voyager 3: A Concept Mission to Interstellar Medium”, Journal of Spacecraft & Rockets, 59(3), May 2022.
[43] R. L. McNutt Jr, R. F. Wimmer-Schweingruber, M. Gruntman, S. M. Krimigis, E. C. Roelof, P. C. Brandt, S. R. Vernon, M. V. Paul, R. W. Stough, J. D. Kinnison, “Interstellar Probe – Destination: Universe!”, Acta Astronautica, 196, 13-28, July 2022.
[44] K. F. Long, “Development of SunVoyager Interstellar Precursor Probe Driven by Inertial Confinement Fusion Propulsion”, Journal of Spacecraft & Rockets, May 2024.
[45] R. Reagan, Speech to the United Nations General Assembly, September 1987.
[46] J. Madison, “Federalist No.48”, The New York Packet, 1 February 1788.
[47] The Charter of the United Nations and the Statute of the International Court of Justice, 1945.
[48] “The Veto: UN Security Council Working Methods”, Security Council Report, 13 February 2024. https://www.securitycouncilreport.org/un-security-council-working-methods/the-veto.php
[49] “General Assembly Adopts Landmark Resolution Aimed at Holding Five Permanent Security Council Members for Use of Veto”,
[50] T. Schindlmayr, “Obstructing the Security Council: The Use of the Veto in the Twentieth Century”, Journal of the History of International Law, 3(2), 218-234, 01 January 2001.
[51] J. Dobbins, S. G. Jones, K. Crane, A. Rathmell, B. Steele, R. Teltschik, A. Timilsina, “The UN’s Role in Nation-Building, From the Congo to Iraq”, RAND Corporation, 2005.
[52] Campaign for a United Nations Parliamentary Assembly. https://www.unpacampaign.org/
[53] I. A. Crawford, “Who Speaks for Humanity? The Need for a Single Political Voice”, Book Chapter Contribution for “Astrobiology: Science, Ethics and Public Policy” edited by O Torres et al., Scrivener Publishing LLC, 2021.
[54] C. Sagan, “Pale Blue Dot”, Random House, 1997.
[55] J. W. Deardorff, “Possible Extraterrestrial Strategy for Earth”, Q.Jl R. Astr.Soc, 27, 94-101, 1986.
[56] R. Wise (Director), “The Day the Earth Stood Still”, 20th Century Fox, 1951.
[57] A. C. Clarke, “Childhood’s End”, Ballantine Books, 1953.
[58] “Unidentified Anomalous Phenomena: Implications on National Security, Public Safety, and Government Transparency”, United States Congress Subcommittee Hearing, 26 July 2023.
[59] “Norms for Proceeding in the Discernment of Alleged Supernatural Phenomena”, 2024.
[60] C. Sagan, “The Demon-Haunted World: Science as a Candle in the Dark”, Random House, 1995.
[61] Gautama Buddha, 5th/6th Century religious teacher.
[62] J. Benford, “Looking for Lurkers: Co-orbiters as SETI Observables”, The Astronomical Journal, 158(4), 150, 20 September 2019.
[63] A. Einstein, Letter to Robert S Marcus, February 1950.
[64] G. Clark and L. B. Sohn, “World Peace Through World Law”, Harvard University Press, 1962.
[65] J. Madison, “Federalist 1”, The Federalist Papers, 1787.
[66] “The Constitution of the United States of America and Selected Writings of the Founding Fathers”, Barnes & Noble, 2012.
Third Time’s a Charm: A Planet at Barnard’s Star
If you follow the fortunes of the stars closest to us, you know that Barnard’s Star has always excited interest, both because of its proximity to our system (about six light years) but also because of the early work on the star performed by Peter Van de Kamp at Sproul Observatory (Swarthmore College). That work, which ran until the early 1970s, initially appeared to show a Jupiter-class planet at the star but the results were later explained as instrumentation errors in Van de Kamp’s equipment.
It was a cautionary tale, but credit the astronomer for working tirelessly using astrometry to attempt to validate a conclusion we now take for granted: There are planets around other stars. In 2018 we seemed to have a solid detection of a much different planet candidate via Guillem Anglada-Escudé (Queen Mary University, London) and Ignasi Ribas (Institute of Space Studies of Catalonia and the Institute of Space Sciences, CSIC in Spain), indicating a super-Earth of 3.3 Earth masses in an orbit near Barnard Star’s snowline (see A Super-Earth Orbiting Barnard’s Star for that coverage), but no confirmation followed.
Indeed, we may have been looking at stellar activity in this second detection rather than a planet, according to a new paper announcing the discovery of a planet below Earth mass at the star. On the 2018 work, the paper notes that “ESPRESSO data does not support the existence of the 233 d candidate planet.” See Paul Robertson’s A very stealthy alias: the impostor planet of Barnard’s star for a detailed look at the detection and the stellar activity explanation.
But this new announcement of a Barnard’s Star planet looks to be solid. Lead author Jonay González Hernández (Instituto de Astrofísica de Canarias) and team, working at the European Southern Observatory’s Very Large Telescope (VLT) made the find with the help of ESPRESSO (Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations), the successor to the highly successful HARPS spectrograph, capable of teasing out the wobble induced in the star by a planet.
We now have a low-mass planet, as confirmed by HARPS at the La Silla Observatory, HARPS-N (on La Palma, Canary Islands) and CARMENES at the Calar Alto Observatory, Spain. Twenty times closer to Barnard’s Star than Mercury is to the Sun, the planet orbits in 3.15 Earth days and has a surface temperature around 400 K. The planet is about half the mass of Venus, or three times the mass of Mars. Says Hernández:
“Barnard b is one of the lowest-mass exoplanets known and one of the few known with a mass less than that of Earth. But the planet is too close to the host star, closer than the habitable zone. Even if the star is about 2500 degrees cooler than our Sun, it is too hot there to maintain liquid water on the surface.”
T
Image: This stunning panorama shows the Milky Way galaxy arching above the platform of ESO’s Very Large Telescope (VLT) on Cerro Paranal, Chile, where the work on the new Barnard’s Star discovery was performed. At 2635 metres above sea level, Paranal Observatory is one of the very best astronomical observing sites in the world and is the flagship facility for European ground-based astronomy. The extent of our galaxy’s cloudy and dusty structure can be seen in remarkable detail as a dim glowing band across the observation deck. Credit: ESO.
Indeed, Barnard’s Star b (which I see is being referred to simply as Barnard b) may not be the only planet here. The paper makes note of three other candidates currently under investigation using ESPRESSO. Here we have to be careful. The radial velocity data show several signals at periods less than 10 days: The paper reports periods of 3.15 d, 4.12 d, 2.34 d and 6.74 d, sorted by strength of the signals. The researchers cannot confirm these signals at this point, but are able to model a system that fits the data. Let me go a bit into the weeds here. From the paper:
[The modeled system] would correspond to a system of four sub-Earth mass planets with mp sin i = 0.32, 0.31, 0.22 and 0.17 M⊕. All candidate planetary orbits would be located inner to the habitable zone of the star, with orbital semi-major axes between 0.019 AU and 0.038 AU. Thus all the candidate planets would be irradiated more than the Earth with incident fluxes between 2.4 S ⊕ to 10.1 S ⊕, and their equilibrium temperatures, assuming albedo of 0.3, would be in between 440 K of the inner planet to the 310 K of the outer planet.
Let’s untangle this (this is how I learn things). The four potential planets that emerge from this model are described by mp sin i, which helps us determine a minimum mass (mp) for a planet. What is at stake here is the inclination angle (i) of the planet’s orbit as viewed from Earth, but because we cannot see such planets, we can go from an edge-on orbit (sin close to 1) to a face-on orbit, where sin i is small and the mass of the planet is much higher. So the numbers above refer to minimum masses that could be higher depending on how the system is tilted to our point of view. If these other worlds exist, they’re all too close to the star to fit the liquid water habitable zone. Indeed, the S value in the quote refers to solar flux, which in the case of the hypothetical planets would be 2.4 to 10.1 times the stellar radiation that Earth receives from the Sun.
In any case, the authors are careful to add that confirming an actual four-planet system at Barnard’s Star would take many more observations using ESPRESSO:
These observations would need to be done with sufficient cadence to sample these planet periods as well as with enough baseline to be able to properly model the activity of the star, in particular, those activity signals associated with the stellar rotation.
So the hunt continues, encouraged by the one newly confirmed planet, as we scour this and other nearby red dwarfs for evidence of small rocky worlds. We can look ahead to ANDES, the ArmazoNes high Dispersion Echelle Spectrograph, which will be used in conjunction with the European Southern Observatory’s Extremely Large Telescope, a 39-meter instrument that will be the largest visible and infrared light telescope in the world. Located at Cerro Armazones in Chile’s Atacama Desert, the telescope should see first light as soon as 2028.
The paper is Hernández et al., “A sub-Earth-mass planet orbiting Barnard’s star,” Astronomy & Astrophysics Volume 690 (October 2024). Full text.
We Are the Music: Reflections on Galactic Immensity
While I’m immersed in the mechanics of exoplanet detection and speculation about the worlds uncovered by Kepler, TESS and soon, the Roman Space Telescope (not to mention what’s coming with Extremely Large Telescopes), I’m daunted by a single fact. We keep producing great art showing what exoplanets in their multitudes look like, but we can’t actually see them. Or I should say that the few visual images we have captured thus far are less than satisfying blobs of light marking hot young worlds.
Please don’t interpret this as in any way downplaying the heroic work of scientists like Anne-Marie Lagrange (LESIA, Observatoire de Paris) on Beta Pictoris b and all the effort that has gone into producing the 70 or so images of exoplanets thus far found. I’m actually just pointing out how difficult seeing an exoplanet close up would be, for the goal of interstellar flight that animates our discussions remains hugely elusive. The work continues, and who knows, maybe in a century we’ll get a close-up of Proxima Centauri b. Until then, I need periodically to return to deep sky objects to refresh the part of me that needs sensual imagery (and also accounts for my love of Monet).
Herewith some images that would challenge even the greatest of the Impressionists to equal. We’re looking at the Milky Way with new eyes thanks to two related projects, the VISTA Variables in the Vía Láctea (VVV) survey and the companion VVV eXtended (VVVX) survey. Roberto Saito (Universidade Federal de Santa Catarina, Brazil) is lead author of the paper introducing this work, which includes close to 100 co-authors. VISTA is the European Southern Observatory’s Visible and Infrared Survey Telescope for Astronomy, run out of the Paranal Observatory in Chile. Its great tool is the infrared camera VIRCAM, which opens up areas otherwise hidden by dust and gas.
Image: This collage highlights a small selection of regions of the Milky Way imaged as part of the most detailed infrared map ever of our galaxy. Here we see, from left to right and top to bottom: NGC 3576, NGC 6357, Messier 17, NGC 6188, Messier 22 and NGC 3603. All of them are clouds of gas and dust where stars are forming, except Messier 22, which is a very dense group of old stars. The images were captured with ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA) and its infrared camera VIRCAM. The gigantic map to which these images belong contains 1.5 billion objects. The data were gathered over the course of 13 years as part of the VISTA Variables in the Vía Láctea (VVV) survey and its companion project, the VVV eXtended survey (VVVX). Credit: ESO/VVVX survey.
We’re dealing with some 200,000 images covering an area of sky that is equivalent to 8600 full moons, according to ESO, and 10 times more objects than released by the same team in 2012, based on observations that began two years earlier and ended early in 2023. Working over that timeframe allowed scientists to chart brightness changes and movement that can be useful in calculating distances on this huge scale.
Image: This image shows the regions of the Milky Way mapped by the VISTA Variables in the Vía Láctea (VVV) survey and its companion project, the VVV eXtended survey (VVVX). The total area covered is equivalent to 8600 full moons. The Milky Way comprises a central bulge — a dense, bright and puffed-up conglomeration of stars — and a flat disc around it. Red squares mark the central areas of our galaxy originally covered by VVV and later re-observed by VVVX: most of the bulge and part of the disc at one side of it. The other squares indicate regions observed only as part of the extended VVVX survey: even more regions of the disc at both sides (yellow and green), areas of the disc above and below the plane of the galaxy (dark blue) and above and below the bulge (light blue). The numbers indicate the galactic longitude and latitude, which astronomers use to chart objects in our galaxy. The names of various constellations are also shown. Credit: ESO/VVVX survey.
The twin surveys have already spawned more than 300 scientific papers while producing a dataset too large to release as a single image, although the processed data and objects catalog can be found at the ESO Science Portal. More than 4000 hours of observation went into the work, and while the twin projects cover about 4 percent of the celestial sphere, the region covered contains the majority of the Milky Way’s stars and the largest concentration of gas and dust in the galaxy.
Clearly, a survey like this will be useful for observations from future instruments like the Vera Rubin Observatory, which will deploy an 8.4-meter mirror and the largest camera ever built for astronomy and astrophysics in a deep survey of the southern hemisphere at optical wavelengths. Instruments like the James Webb Space Telescope are obviously able to home in on objects with much higher resolution but cannot be used for broad area surveys of this kind. Next generation ground-based instruments will use the survey in compiling their target lists, and eventually the Roman Space Telescope will be able to produce deep infrared images of large regions with higher resolution.
As the paper notes:
…there are many more applications of this ESO Public Survey for the community to exploit for future studies of Galactic structure, stellar populations, variable stars, star clusters of all ages, among other exciting research areas, from stellar and (exo)planetary astrophysics to extragalactic studies. The image processing, data analysis and scientific exploitation will continue for the next few years, with many discoveries yet to come. The VVVX Survey will also be combined with future facilities to boost its scientific outcome in unpredictable ways: we are sure that this survey will remain a goldmine for MW studies for a long time.
But I fall back on sheer aesthetics this morning. As witness starbirth:
Image: A new view of NGC 3603 (left) and NGC 3576 (right), two stunning nebulas imaged with ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA). This infrared image peers through the dust in these nebulas, revealing details hidden in optical images. NGC 3603 and NGC 3576 are 22,000 and 9,000 lightyears away from us, respectively. Inside these extended clouds of dust and gas, new stars are born, gradually changing the shapes of the nebulas via intense radiation and powerful winds of charged particles. Given their proximity, astronomers have the opportunity to study the intense star formation process that is as common in other galaxies but harder to observe due to the vast distances. The two nebulas were catalogued by John Frederick William Herschel in 1834 during a trip to South Africa, where he wanted to compile stars, nebulas and other objects in the sky of the southern hemisphere. This catalogue was then expanded by John Louis Emil Dreyer in 1888 into the New General Catalogue, hence the NGC identifier in these and other astronomical objects. Credit: ESO/VVVX survey,
And a nebula inset into a riotous field of stars:
Image: This image shows a detailed infrared view of Messier 17, also known as the Omega Nebula or Swan Nebula, a stellar nursery located about 5500 light-years away in the constellation Sagittarius. This image is part of a record-breaking infrared map of the Milky Way containing more than 1.5 billion objects. ESO’s VISTA ― the Visible and Infrared Survey Telescope for Astronomy ― captured the images with its infrared camera VIRCAM. The data were gathered as part of the VISTA Variables in the Vía Láctea (VVV) survey and its companion project, the VVV eXtended survey (VVVX). Credit: ESO/VVVX survey.
The vistas opening up with our new technologies inspire a deep sense of humility. We are within and a part of what we are observing, which forces us continually to look with new eyes. I think of Carl Sagan’s frequent admonition that we are made of star-stuff. Or as T. S. Eliot put it in the “The Dry Salvages” (from Four Quartets):
For most of us, there is only the unattended
Moment, the moment in and out of time,
The distraction fit, lost in a shaft of sunlight,
The wild thyme unseen, or the winter lightning
Or the waterfall, or music heard so deeply
That it is not heard at all, but you are the music
While the music lasts.
We are the music. The immense VISTA data-trove will advance further discovery while igniting and shaping our imagination. Perspective frames the seasoned mind.
The paper is Saito et al, “The VISTA Variables in the Vía Láctea extended (VVVX) ESO public survey: Completion of the observations and legacy,” Astronomy & Astrophysics Vol. 689, A148 (September 2024). Full text.
Habitability around F-class Stars
Some years back I read a science fiction story in which the planet where the action took place orbited an F-class star. That was sufficiently odd to get my attention, and I began to pay attention to these stars, which represent on the order of 3 percent of all stars in the galaxy. Stars like our G-class Sun weigh in at about 7 percent, while the vast majority of stars are M-dwarfs, still our best chances for life detection because of the advantages they offer to our observing technologies, including deep transits and lower stellar brightness for direct imaging purposes.
F-stars are intriguing despite the fact that they tend to be somewhat larger than the Sun (up to 1.4 times its mass) and also hotter (temperatures in the range of 6200-7200 K). Back in 2014, I looked at the work of Manfred Cuntz (University of Texas at Arlington), who had performed a study examining radiation levels in these stars and the damage that DNA would experience with an F-star in the sky at various stages of stellar evolution. We’re dealing here with a shorter life expectancy than the Sun, usually reckoned in the range of 2-8 billion years on the main sequence depending on mass.
We’re also dealing with a larger habitable zone, a width 1.5 to 4 times greater than in the case of the Sun, again depending on the mass of the star and the climate models used to calculate the HZ. So there are advantages, for in the 2014 work, Cuntz and team found that the outer regions of the HZ experience tolerable levels of UV radiation. Now Cuntz has pushed the F-star work forward with a new paper, working with lead author Shaan Patel, a UTA grad student, and colleague Nevin Weinberg. The new work embarks on a statistical analysis of planet-hosting F-class stars drawn from data in the NASA Exoplanet Archive, which is a resource I don’t link to often enough. Says Cuntz:
“F-type stars are usually considered the high-luminosity end of stars with a serious prospect for allowing an environment for planets favorable for life. However, those stars are often ignored by the scientific community. Although F-type stars have a shorter lifetime than our Sun, they have a wider HZ. In short, F-type stars are not hopeless in the context of astrobiology.”
Image: The habitable zone as visualized around different types of star. Credit: NASA.
206 planetary systems emerge from the investigation, of which 18 offer a planet in the liquid water habitable zone for at least part of its orbit. The authors break these worlds down into categories based on the amount of time each spends in the HZ. It’s worth noting that all the currently known planets in the habitable zone of F stars are Jupiter-class worlds, so what we are thinking about here in terms of astrobiology is habitable moons, about which interesting new work continues to emerge. I also assume we’ll be finding terrestrial-class worlds around these stars with deeper investigation.
The exo-Jupiter 38 Virginis (HD 111998) is noteworthy for spending the entirety of its orbit in the habitable zone, which most of these worlds do not. Now things get intriguing. There are reasons for including planets whose orbital eccentricity allows only partial passage through the HZ, drawing on previous research (citation below) on atmospheric conditions for Earth-class planets in extremely elliptical orbits. That 2002 study found that despite large variations in surface temperature, long-term climate depended on the average stellar flux over the entire orbit, meaning that planets not in but near the HZ may still be potentially habitable, at least for extremophiles.
And we can possibly extend our definition of habitable zone. From the paper:
As part of our study, we also consider cushions for both HZ limits. This approach is informed by previous studies given by Abe et al. (2011) and Wordsworth et al. (2013). The former work deals with climate simulations for “land planets” (i.e., desert worlds with limited surface water), which based on those models have a significantly extended inner HZ limit than planets with abundant surface water (akin to Earth). Moreover, Wordsworth et al. (2013) continued to explore the outer limit of HZs by considering the impact of CO2, including CO2 clouds. They found that in their models the outer HZ is notably extended, commensurate to the Martian orbit in the solar system.
Image: This is Figure 10 from the paper. Caption: Depiction of all 18 systems that spend at least part of their time within their respective HZs. Empty markers in panel (c) represent actual planetary mass values as opposed to minimum mass values, which are represented by filled in markers. Credit: Patel et al.
Consider that the lowest-mass planet currently in a habitable zone in all these systems has an estimated mass 143 times Earth and you’ll agree with the need to probe further into potentially habitable exomoons, about which we know next to nothing. Overall, with projects like the Habitable Worlds Observatory on the table, we should consider F-class stars as targets for deeper study. As lead author Patel says, “In future studies, our work may serve to investigate the existence of Earth-mass planets and also habitable exomoons hosted by exo-Jupiters in F-type systems.”
The paper is Patel et al., “Statistics and Habitability of F-type Star–Planet Systems,” The Astrophysical Journal Supplement Series Vol. 274, No. 1 (12 September 2024), 20 (full text). The paper on habitability in eccentric orbits is Williams & Pollard, “Earth-like worlds on eccentric orbits: excursions beyond the habitable zone,” International Journal of Astrobiology Vol. 1, Issue 1 (January, 2002), 61-68 (abstract).
The Long Afternoon of Earth
Every time I mention a Brian Aldiss novel, I have to be careful to check the original title against the one published in the US. The terrific novel Non-Stop (1958) became Starship in the States, rather reducing the suspense of decoding its strange setting. Hothouse (1962) became The Long Afternoon of Earth when abridged in the US following serialization in The Magazine of Fantasy & Science Fiction. I much prefer the poetic US title with its air of brooding fin de siècle decline as Aldiss imagines our deep, deep future.
Imagine an Earth orbiting a Sun far hotter than it is today, a world where our planet is now tidally locked to that Sun, which Aldiss describes as “paralyzing half the heaven.” The planet is choked with vegetation so dense and rapidly evolving that humans are on the edge of extinction, living within a continent-spanning tree. The memory of reading all this always stays with me when I think about distant futures, which by most accounts involve an ever-hotter Sun and the eventual collapse of our biosphere.
Image: The dust jacket of the first edition of Brian Aldiss’ novel Hothouse.
Indeed, warming over the next billion years will inevitably affect the carbon-silicate cycle. Its regulation of atmospheric carbon dioxide is a process that takes CO2 all the way from rainfall through ocean sediments, their subduction into the mantle and the eventual return of CO2 to the atmosphere by means of volcanism. Scientists have thought that the warming Sun will cause CO2 to be drawn out of the atmosphere at rates sufficient to starve out land plants, spelling an end to habitability. That long afternoon of Earth, though, may be longer than we have hitherto assumed.
A new study now questions not only whether CO2 starvation is the greatest threat but also manages to extend the lifetime of a habitable Earth far beyond the generally cited one billion years. The scientists involved apply ‘global mean models,’ which help to analyze how vegetation affects the carbon cycle. Lead author Robert Graham (University of Chicago), working with colleagues at Israel’s Weizmann Institute of Science, is attempting to better understand the mechanisms of plant extinction. Their new constraints on silicate weathering push the conclusion that the terrestrial biosphere will eventually succumb to temperatures near runaway greenhouse conditions. The biosphere dies from simple overheating rather than CO2 starvation.
The implications are intriguing and offer fodder for a new generation of science fiction writers working far-future themes. For in the authors’ models, the lifespan of our biosphere may be almost twice as long as has been previously expected. Decreases in plant productivity act to slow and eventually (if only temporarily) reverse the future decrease in CO2 as the Sun continues to brighten.
Here’s the crux of the matter: Rocks undergo weathering as CO2 laden rainwater carrying carbonic acid reacts with silicate minerals, part of the complicated process of sequestering CO2 in the oceans. The authors’ models show that if this process of silicate weathering is only weakly dependent on temperature – so that even large temperature changes have comparatively little effect – or strongly CO2 dependent, then “…progressive decreases in plant productivity can slow, halt, and even temporarily reverse the expected future decrease in CO2 as insolation continues to increase.”
From the paper:
Although this compromises the ability of the silicate weathering feedback to slow the warming of the Earth induced by higher insolation, it can also delay or prevent CO2 starvation of land plants, allowing the continued existence of a complex land biosphere until the surface temperature becomes too hot. In this regime, contrary to previous results, expected future decreases in CO2 outgassing and increases in land area would result in longer lifespans for the biosphere by delaying the point when land plants overheat.
How much heat can plants take? The paper cites a grass called Dichanthelium lanuginosum that grows in geothermal settings (with the aid of a symbiotic relationship with a fungus) as holding the record for survival, at temperatures as high as 338 K. The authors take this as the upper temperature limit for plants, adding this:
Importantly, with a revised thermotolerance limit for vascular land plants of 338 K, these results imply that the biotic feedback on weathering may allow complex land life to persist up to the moist or runaway greenhouse transition on Earth (and potentially Earth-like exoplanets). (Italics mine)
The long afternoon of Earth indeed. The authors point out that the adaptation of land plants (Aldiss’ continent-spanning tree, for example) could push their extinction to even later dates, limited perhaps by the eventual loss of Earth’s oceans.
…an important implication of our work is that the factors controlling Earth’s transitions into exotic hot climate states could be a primary control on the lifespan of the complex biosphere, motivating further study of the moist and runaway greenhouse transitions with 3D models. Generalizing to exoplanets, this suggests that the inner edge of the “complex life habitable zone” may be coterminous with the inner edge of the classical circumstellar habitable zone, with relevance for where exoplanet astronomers might expect to find plant biosignatures like the “vegetation red edge” (Seager et al. 2005).
The paper is Graham, Halevy & Abbot, “Substantial extension of the lifetime of the terrestrial biosphere,” accepted at Planetary Science Journal (preprint).
Beamed Propulsion and Planetary Security
Power beaming to accelerate a ‘lightsail’ has been pondered since the days when Robert Forward became intrigued with nascent laser technologies. The Breakthrough Starshot concept has been to use a laser array to drive a fleet of tiny payloads to a nearby star, most likely Proxima Centauri. It’s significant that a crucial early decision was to place the laser array that would drive such craft on the Earth’s surface rather than in space. You would think that a space-based installation would have powerful advantages, but two immediate issues drove the choice, the first being political.
The politics of laser beaming can be complicated. I’m reminded of the obligations involved in what is known as the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (let’s just call it the Outer Space Treaty), spurred by a paper from Adam Hibberd that has just popped up on arXiv. The treaty, which comes out of the United Nations Office for Space Affairs, emerged decades ago and has 115 signatories globally.
Here’s the bit relevant for today’s discussion, as quoted by Hibberd (Institute for Interstellar Studies, London):
States Parties to the Treaty undertake not to place in orbit around the earth any objects carrying nuclear weapons or any other kinds of weapons of mass destruction, install such weapons on celestial bodies, or station such weapons in outer space in any other manner. The moon and other celestial bodies shall be used by all States Parties to the Treaty exclusively for peaceful purposes. The establishment of military bases, installations and fortifications, the testing of any type of weapons and the conduct of military manoeuvres on celestial bodies shall be forbidden. The use of military personnel for scientific research or for any other peaceful purposes shall not be prohibited. The use of any equipment or facility necessary for peaceful exploration of the moon and other celestial bodies shall also not be prohibited.
So we’re ruling out weaponry in orbit or elsewhere in space. Would that prohibit building an enormous laser array designed for space exploration? Hibberd believes a space laser would be permitted if its intention were for space exploration or planetary defense, but you can see the problem: Power beaming at this magnitude can clearly be converted into a weapon in the wrong hands. And what a weapon. A 10 km X 10 km installation as considered in Philip Lubin’s DE-STAR 4 concept generates 70 GW beams. You can do a lot with that beyond pushing a craft to deep space or taking an Earth-threatening asteroid apart.
Build the array on Earth and the political entanglements do not vanish but perhaps become manageable as attention shifts to how to avoid accidentally hitting commercial airliners and the like, including the effects on wildlife and the environment.
Image: Pushing a lightsail with beamed energy is a feasible concept capable of being scaled for a wide variety of missions. But where do we put the beamer? Credit: Philip Lubin / UC-Santa Barbara.
The second factor in the early Starshot discussions was time. Although now slowed down as its team looks at near-term applications for the technologies thus far examined, Starshot was initially ramping up for a deployment by mid-century. That’s pretty ambitious, and we wouldn’t have a space option that could develop the beamer if that stretchiest-of-all-stretch goals actually became a prerequisite.
So if we ease the schedule and assume we have the rest of the century or more to play with, we can again examine laser facilities off-planet. Moreover, Starshot is just one beamer concept, and we can back away from its specifics to consider an overall laser infrastructure. Hibberd’s choice is the DE-STAR framework (Directed Energy Systems for Targeting of Asteroids and Exploration) developed by Philip Lubin at UC-Santa Barbara and first described in a 2012 on planetary defense. The concept has appeared in numerous papers since, especially 2016’s “A Roadmap to Interstellar Flight.”
If the development of these ideas intrigues you, let me recommend Jim Benford’s A Photon Beam Propulsion Timeline, published here in 2016, as well as Philip Lubin’s DE-STAR and Breakthrough Starshot: A Short History, also from these pages.
What Hibberd is about in his new paper is to work out how far away various categories of laser systems would have to be to ensure the safety of our planet. This leads to a sequence of calculations defining different safe distances depending on the size of the installation. The DE-STAR concept is modular, a square phased array of lasers where each upgrade indicates a power of base 10 expansion to the array in meters. In other words, while DE-STAR 0 is 1 meter to the side, DE-STAR 1 goes to 10 meters to the side, and so on. Here’s the chart Hibberd presents for the system (Table 1 in his paper).
Keep scaling up and you achieve arrays of stupendous size, and in fact an early news release from UC-Santa Barbara described a DE-STAR 6 as a propulsion system for a 10-ton interstellar craft. It’s hard to imagine the 1,000 kilometer array this would involve, although I’m sure Robert Forward would have enjoyed the idea.
So taking Lubin’s DE-STAR as the conceptual model (and sticking with the more achievable lower end of the DE-STAR scale), how can we lower the risks of this kind of array being used as a weapon? And that translates into: Where can we put an array so that even its largest iterations are too far from Earth to cause concern?
Hibberd’s calculations involve determining the minimum level of flux generated by an individual 1 meter aperture laser element (this is DE-STAR 0) – “the unphased flux of any DE-STAR n laser system” – and using as the theoretical minimum safe distance from Earth a value on the order of 10 percent of the solar constant at Earth, meaning the average electromagnetic radiation per unit area received at the surface. The solar constant value is 1361 watts per square meter (W/m²); Hibberd pares it down to a maximum allowed flux of 100 W/m² and proceeds accordingly.
Now the problems of a space-based installation become strikingly apparent, for the calculations show that DE-STAR 1 (10 m X 10 m) would need to be positioned outside cis-lunar space to ensure these standards, and even further away (beyond the Earth-Moon Lagrange 2 point) for ultraviolet wavelengths (λ ≲ 350nm). That takes us out 450,000 kilometers from Earth. However, a position at the Sun-Earth L2 Lagrange location would be safe for a DE-STAR 1 array.
The numbers add up, and we have to take account of stability. The Sun/Earth Lagrange 4 and 5 points would allow a DE-STAR 2 laser installation to remain at a fixed location without on-board propulsion. DE-STAR 3 would have to be positioned beyond the asteroid belt, or even beyond Jupiter if we take ultraviolet wavelengths into account. The enormous DE-STAR 4 level array would need to be placed as far as 70 AU away.
All this assumes we are working with an array on direct line of sight with the Earth, but this does not have to be the case. Let me quote Hibberd on this, as it’s rather interesting:
Two such locations are the Earth/Moon Lagrange 2 point (on a line from the Earth to the Moon, extending beyond the Moon by ∼ 61, 000 km) and the Sun/Earth Lagrange 3 point (at 1 au from the Sun and diametrically opposite the Earth as it orbits the Sun). In both cases, the instability of these points will result in the DE-STAR wandering away and potentially becoming visible from Earth, so an on-board propulsion would be needed to prevent this. One solution would be to use the push-back from the lasers to provide a means of corrective propulsion. However it would appear a DE-STAR’s placement at either of these points is not an entirely satisfactory solution to the problem.
So we can operate with on-board propulsion to achieve no direct line-of-sight to Earth, but the orbital instabilities involved make this problematic. Achieving the goal of a maximum safe flux at Earth isn’t easy, and we’re forced to place even DE-STAR 2 arrays at least 1 AU from the Sun at the Sun/Earth Lagrange 4 or 5 positions to achieve stable orbits. DE-STAR 3 demands movement beyond the asteroid belt at a minimum. DE-STAR levels beyond this will require new strategies for safety.
Back to the original surmise. Even if we had the technology to build a DE-STAR array in space in the near future, safety constraints dictate that it be placed at large distances from the Earth, making it necessary to have first developed an infrastructure within the Solar System that could support a project like this. As opposed to one-off missions from Earth launching before such an infrastructure is in place, we’ll need to have the ability to move freely at distances that ensure safety, unless other means of planetary protection can be ensured. Hibberd doesn’t speculate as to what these might be, but somewhere down the line we’re going to need solutions for this conundrum.
The paper is Hibberd, “Minimum Safe Distances for DE-STAR Space Lasers,” available as a preprint. Philip Lubin’s “A Roadmap to Interstellar Flight” appeared in Journal of the British Interplanetary Society 69, 40-72 (2016). Full text.