Centauri Dreams continues to maintain that a major justification for interstellar research is the need of our species to protect itself. The record of life on earth is studded with extinction-level events evidently caused by asteroid or cometary impacts, and as technology matures, the danger of a man-made catastrophe cannot be ruled out. We know that life is fragile, as is underscored by the following story. According to a new study from NASA and the University of Kansas, working with 'what if' scenarios and a finely-tuned model of Earth's atmosphere, a gamma-ray burst from the explosion of a relatively nearby star could destroy up to half the atmosphere's ozone layer. Remarkably, a burst that hit the Earth for only ten seconds could do the trick, damaging Earth's only shield against powerful ultraviolet radiation from the Sun. With recovery time of no less than five years, that could have catastrophic effect on all surface species and destroy the food chain. "A gamma-ray burst...
Sedna’s Missing Moon Explained
The mystery of Sedna's spin seems to be solved. The enigmatic Kuiper Belt object whose orbit reaches as far as 500 AU from the Sun (and as close as 80) appeared to have an unusually slow rotation rate when first observed. Some astronomers speculated that an unseen moon could be the cause, even though the best Hubble images showed no such object. It has taken a set of new measurements by Scott Gaudi, Krzysztof Stanek and colleagues at the Harvard-Smithsonian Center for Astrophysics (CfA) to solve the mystery. Sedna's rotation period isn't the previously thought 20 days, but ten hours, which is consistent with other planetoids in the Solar System. The need for the missing moon has vanished. Not that Sedna doesn't remain unusual. In addition to its highly elliptical orbit, the planetoid is one of the largest Kuiper Belt objects known, three-quarters the size of Pluto, or about 1,000 miles across. Another oddity: Sedna's ruddy color, which remains unexplained. Image: CfA astronomer Scott...
New Earths Awaiting Discovery
The planetary systems so far discovered around other stars have generally been dominated by huge, gas giant worlds, many with so-called 'hot Jupiters' that orbit extremely close to their parent star. And that makes sense, given that a major method used for detecting exoplanets relies upon the star's 'wobble' as it is influenced by such high-mass objects. We're not yet at the point where Earth-sized planets can be found, although we've reduced the detection size down to Neptune-class objects, with better things to come. But don't assume that even the systems discovered so far are without terrestrial planets. As many as half of them may harbor habitable worlds, according to work by Barrie Jones, Nick Sleep, and David Underwood at the Open University in Milton Keynes (UK), which was presented today at the Royal Astronomical Society National Astronomy Meeting in Birmingham. The team used computer models to analyze the gravitational effects of known exoplanets on other, undiscovered...
Laser Propulsion to Orbit?
When Freeman Dyson recently addressed Flight School (a part of the PC Forum technology conference held in Scottsdale AZ in March), he cited one key driver for getting people into space in a big way: propulsion. "What you need," Dyson said, "is a launch system that stays on the ground." A case in point that Dyson favors is laser propulsion, as exemplified in the 'lightcraft' concept of Rensselaer Polytechnic Institute's Leik Myrabo. Back in October of 2000, a small test model of Myrabo's design rose to a height of 233 feet, powered by a 10-KW pulsed carbon dioxide laser. Beamed energy means that future, full-scale versions of such technology will need only a small amount of on-board propellant, sharply reducing the mass of the vehicle. The lightcraft models created so far reflect the laser beam from a parabolic mirror on the underside of the vehicle to superheat air to a temperature roughly ten times that of the surface of the Sun. The air explodes and propels the craft into motion,...
Doubts About GQ Lupi
Sky & Telescope is reporting that the purported planet around GQ Lupi may not be a planet but a brown dwarf. The magazine evidently draws this conclusion from a study of the paper by Ralph Neuhaeuser and colleagues that is to run in an upcoming issue of Astronomy & Astrophysics. "The newly released paper by Neuhauser and his colleagues suggests that the the object in question could be as much as 42 Jupiter masses. Brown dwarfs are, by definition, between 13 and 74 Jupiter masses," the magazine reports. Meanwhile, data on the possible GQ Lupi planet can be found at the Extrasolar Planets Encyclopedia. The preprint of the Neuhaeuser paper, "Evidence for a co-moving sub-stellar companion of GQ Lup," is available here. A key excerpt from the paper: The most critical point in the mass determination of the companion (candidates) of GQ Lup and 2M1207 are the models, which may be off by an unknown factor for low ages (few Myrs); they need to be calibrated, before the mass of such companions...
Image of an Extrasolar World?
Space.com is reporting that a European team led by Ralph Neuhaeuser of the Astrophysical Institute & University Observatory has obtained a photograph of an extrasolar planet around GQ Lupi, a young star about 400 light years from Earth. The image shows a faint object the team believes to orbit some 100 AU from its parent star, an apparently young and hot planet. From the article: The planet is about 3,140 degrees Fahrenheit (2000 Kelvin) -- not the sort of place that would be expected to support life. Neuhaeuser's team has also detected water in the planet's atmosphere. The world is expected to be gaseous, like Jupiter. It is about twice the diameter of Jupiter. The mass estimate -- one to two times that of Jupiter -- is "somewhat uncertain," Neuhaeuser said. The planet is three times farther from GQ Lupi than Neptune is from our Sun. "We should expect that the planet orbits around the star, but at its large separation one orbital period [a year] is roughly 1,200 years, so that...
Shielding an Interstellar Probe
Project Daedalus, a probe to Barnard's Star that was the first complete design study of a starship, included among its other innovations a dust shield made of beryllium. Driven by a nuclear-pulse engine using internal confinement fusion, Daedalus was so large that its 50 ton shield (nine millimeters thick over a radius of 32 meters) represented only a fraction of its enormous payload. But it was a critical part of the design. For the Daedalus team realized that at 12 percent of the speed of light, an encounter with even a tiny object could destroy their vehicle. Working in the 1970's and made up of members of the British Interplanetary Society, the starship designers knew that most of the interstellar medium is gaseous, primarily hydrogen and about 25 percent helium. Dust is rare, no more than one dust particle for every trillion atoms, but the faster a spacecraft moves, the more stray protons and electrons it will encounter. At a significant percentage of the speed of light, such...