Franklin Chang-Diaz, astronaut and CEO of Ad Astra Rocket Company, intends to test the VX-200 VASIMIR prototype in January. VASIMIR (Variable Specific Impulse Magnetoplasma Rocket) offers much greater fuel efficiency than conventional chemical rockets, working with hot plasma heated by radio waves and controlled by a magnetic field. Technology Review talks to Chang-Diaz about the prototype and the flight version to follow in this interview.

And here’s where Chang-Diaz see us going in the long-term:

I think lots of people are going to be moving into space. I think we will be populating the moon, building enclaves of research and even money-making ventures there. Just last month, Ad Astra signed an agreement with Excalibur Exploration Ltd., a British company, to mine asteroids [when the time is right]. I believe there will be a huge demand for resources, particularly water, from asteroids and comets, because taking water from the earth is going to be very expensive. We’re probably going to supply the moon and the habitat on the moon with water from comets.

Thus Earth as a place humans come back to; think of it as a kind of national park. Chang-Diaz rightly worries about redundancy in case something happens to our planet. Coupling the commercial space sector with next generation propulsion technologies may expand our options.
——-
And speaking of potential catastrophes, consider the work of Stephen Petranek, who argues that there are plausible ways to surmount almost any disastrous scenario you can mention. Is this the first time in history that humans have had a shot at controlling many of the greatest threats to their survival? View his absorbing presentation on ten ways the Earth could end at the annual TED (Technology, Entertainment and Design) Conference here. A former editor-in-chief at Discover, Petranek is now working on a book on the dangers of climate change.
——-
What’s the best way to explore an asteroid? If the object’s diameter is something less than eight kilometers, a bad step could put an exploring astronaut into orbit or worse. Even much larger objects present the problem of trying to maneuver on a surface without bouncing yourself into completely new trajectories. A possible solution is a tether out of MIT that would be unwound from a spool (deployed by remote-controlled rocket) to completely encircle the asteroid, establishing a roped path along which crews could work. A homely idea, to be sure, but a first step toward making on-site human exploration of Earth-crossing objects possible.