Noted first on Sentient Developments, this interesting video of Michio Kaku discussing the Kardashev scale and where we fit into it. Kaku believes we are living at the critical time when our Type 0 civilization becomes a Type 1. What can happen next gets dicey indeed, as the video makes clear, and it may well be that cultures playing with nuclear weaponry have scant chance of survival, never reaching the point where, as Type 1, they control the processes of their own world and build toward Type 2, the essentially indestructible species that manages all the power of its Sun. [youtube V7FVjATcqvc] It's intriguing to speculate on how Kubrick and Clarke's 2001: A Space Odyssey would have been received had the initial five minutes, in which scientists discussed the robotic seeding of the galaxy, been left in the film. As it was, the mysticism and rich symbolism of the ending left many scratching their heads even while appreciating the grandeur of the story. But Frank Tipler and others...
Exoplanet Prediction by Stellar Elements
Knowing where to point our future planet-hunter telescopes in space is crucial, because we'll want to maximize observing time for the most likely stellar candidates. There are various ways to narrow the list, but one involves the study of existing spectroscopic data. Charles Lineweaver (Australian National University) calls it a 'poor man's technique,' an inexpensive way to look at the elements within stars and calculate from their abundance the kind of planets that may have formed in that system. The differences between the rocky terrestrial planets in our own Solar System and the outer gas giants are instructive. We can assume that planets form from the same raw materials as the stars they orbit. But the inner planets lack volatile gases like hydrogen and helium compared to the Sun, while maintaining the same abundances of heavier elements like silica and iron. The latter don't vaporise easily in warmer inner orbits. So a star heavy in iron is likely circled by inner planets...
An Asteroid Deflection Precursor Mission
We often talk about the need to find and track Earth-crossing objects, but what do we do if we find one that's likely to hit us? We're far from demonstrating our ability to deflect an incoming asteroid, making a precursor mission of some kind a necessity. The European Space Agency has been carrying out design studies with three industrial consortia -- led by Alcatel Alenia Space, EADS Astrium and QinetiQ -- for a precursor mission called Don Quijote that would involve two separate spacecraft. What the ESA has in mind is to drive an impactor into an asteroid to assess the resulting deflection. The impactor vehicle, called Hidalgo, would hit the target asteroid at a relative speed in the area of ten kilometers per second. The orbiter, called Sancho, would measure the deflection with a high degree of precision and act as a data relay for the approaching impactor. It would also deploy instruments in the form of what ESA calls an 'autonomous surface package' to to study the asteroid's...
Gliese 581: Stable but No Transits
Those following the Gliese 581 story have been awaiting the results of the MOST observations with great interest. The Canadian mission put the red dwarf under study for six weeks after the recent flurry of speculation regarding a possible habitable planet, Gliese 581 c, in the system. If the planet made a transit, moving across the face of its star as seen from Earth, then we could learn more about its size and makeup. The results are now in, and no transit occurred. But a second issue is a bit more satisfactory. During the observation period, Gliese 581 showed little change in brightness, indicating a level of stability that would prove beneficial to the growth of life, whether on Gliese 581 c or the more distant (and massive) Gl 581 d, which may orbit on the outer edge of the star's habitable zone. Here's Jaymie Matthews (University of British Columbia and a MOST mission scientist) on the matter: "The climate there should not be a wild rollercoaster ride that would make it...
SETI: Consuming Our Way to Silence?
UK science minister Malcolm Wicks met yesterday with leading British astronomers in a London gathering whose subject was life in the universe. The researchers, drawn from UK universities and research institutes, proved quite optimistic about the chances of intelligent life elsewhere. An article in this morning's Guardian quotes Glenn White, head of astrophysics at the Open University: "You can be pretty sure that if there's life out there, we've a good chance of being able to say so." White's optimism doubtless stems from his work on the Darwin project. The mission, scheduled for a 2015 launch, will deploy a set of telescopes to look for terrestrial worlds around other stars. And although the technology is still in the development stage, the hope is that Darwin's capabilities will extend to conducting spectral analyses on the most interesting planets it finds. That makes detecting biomarkers like large amounts of oxygen along with methane or nitrous oxide a real possibility. Of the...
Re-Shaping the Big Bang
Tom Ashbrook at Boston's WBUR does a terrific job interviewing Neil Turok (Cambridge University) and Alan Guth (MIT) on an issue dear to them both: the Big Bang. Did it occur as advertised, or are new ways of looking at the question through the lens of string theory changing everything? How has the inflation model developed over the years, and did the Big Bang mark the beginning of time? Here's an interview excerpt from Turok: "I think the challenge we're raising is that the usual picture of the Big Bang is based on an assumption which is that time, space, matter, energy, everything began at the Big Bang. And that assumption was made in the 60s when people got the first strong observational evidence that the Big Bang happened. But it's really just an assumption and our point of view has come out of new development in physics which are enabling us to describe the behaviour of matter in very extreme conditions such as were present around the Bang. And what we're seeing is that the Big...
New Horizons Jupiter Data Complete
New Horizons' recent encounter with Jupiter seems to have gone off flawlessly, returning stunning imagery in the bargain. For the Pluto-bound spacecraft, the giant planet turned out to be more than a simple gravitational slingshot. Jupiter was also a shakedown for the even more intriguing planetary encounter to come in 2015, letting both spacecraft systems and operators here on Earth work through a real-time event. This image of the moon Io, showing a volcanic eruption in progress on that tortured world, was only one of many scenes the spacecraft captured (including excellent views of Jupiter's rings). If you look at the Io picture carefully, you can see another plume, from the volcano Masubi at about the 7 o'clock position. On the nightside, the volcano Loki is visible as illuminated by Jupiter. The images that went into this animation were taken over an eight-minute span on March 1. Image: This five-frame sequence of New Horizons images captures the giant plume from Io's Tvashtar...
Alpha Centauri in Context
If we're finding planets in places 1500 light years away, as the TrES project just did, why don't we know more about planets in the Alpha Centauri system? One problem is that Centauri A and B are relatively close to each other, with a semimajor axis of 23.4 AU. Leaving Proxima Centauri out of the picture (at 12,000 AU, its short-term effects can be disregarded), it's still true that radial velocity studies have to take the complicated and varying spectra that binaries produce into account. In other words, getting a read on binaries like these in terms of the slight wobbles that signal a planetary presence can consume lots of telescope time. Nonetheless, we do have some data thanks to observations with the Anglo-Australian Telescope. And we've learned this: No planet around either Centauri A or B induces a velocity variation as high as 2 meters per second. The implication is that any planet orbiting either star individually (in what is known as an S-type orbit) has to have a mass less...
New Planet is a Scorcher
Catching up with some older items, I want to be sure to cover a planet recently discovered in the constellation Hercules, because it gives further punch to a fact about exoplanet studies: Off-the-shelf equipment made for amateur astronomers can be effective at detecting new worlds. The planet in question was found by the Trans-Atlantic Exoplanet Survey (TrES) and later observed by the Hungarian Automated Telescope Network (HATNet). Because it blocks out about 2.5 percent of the star's light as it passes in front of it, the transiting TrES-3 readily shows up in these projects' automated surveys. The method is clearly effective. TrES works with wide-field timed exposures, measuring the light from every star in the field to seek out transits. When TrES-3 was discovered with these techniques, it was studied again with one of the 10-meter instruments at the Keck Observatory on Mauna Kea and by the Las Cumbres Observatory in Hawaii, as well as with instruments at Lowell Observatory and the...
Surface Features on a Nearby Star
An image with 25 times the resolution the Hubble Space Telescope can produce has shown unprecedented levels of detail on the star Altair. Located 15 light years away in the constellation Aquila (The Eagle), Altair is a young, hot star about twice the size of the Sun, known to rotate at 300 kilometers per second at its equator. That's about sixty times Sol's rotation rate, fast enough to flatten Altair into an oval, its radius larger at the equator than the poles. In fact, it's 22 percent wider than it is tall. [kml_flashembed movie="https://centauri-dreams.org/wp-content/uploads/2007/05/altair_small.swf" height="300" width="450" /] Animation credit: Ming Zhao (University of Michigan) How do you get a surface image of a star a million times farther away than our own? The technique is optical interferometry, combining the light from multiple telescopes to simulate a much larger instrument. In this case, the four telescopes used (at Georgia State University's Center for High Angular...
Brown Dwarf or Planet: The Case of XO-3b
Odd planets seem to be sprouting in our data like mushrooms. Take the case of XO-3b. It's got the mass of thirteen Jupiters but orbits its star in less than four days, making it the largest, most massive planet ever found in such a tight orbit. But XO-3b also seizes the attention because its orbit is significantly elliptical rather than circular. Is this evidence for the gravitational effects of another object in the same system? We should be able to learn a lot more about this and other questions because XO-3b is also a transiting world, passing between its star and the Earth. This is the third transiting planet identified by the XO Project, which uses two small telescopes at Haleakala (operated by the University of Hawaii) to identify transit candidates before passing the data on to a network of amateur astronomers for further study. After sufficient evidence is gathered, the work goes back to large telescopes at McDonald Observatory (University of Texas) for confirmation....
An Asteroid Strike in North America?
Earth's geological history could have a lot to say about our future in space. Every time we investigate a huge crater like Chicxulub, the Yucatan impact site that may have played a role in the demise of the dinosaurs, we're reminded that the Solar System is an active and dangerous place. And the evidence multiplies. The Wilkes Land crater in east Antarctica may bear witness to the Permian-Triassic extinction that destroyed almost all life on Earth some 250 million years ago. A defensive system in space with the capability of deflecting dangerous Earth-crossing objects is vital for species survival, whether the next strike occurs in ten or a hundred thousand years. But it's a hard concept to sell because Earth's major strikes, unlike those on the Moon, for example, tend to be obscured over time. Absent a visible historical context, a relatively minor strike like the 1908 Tunguska event can come to be seen as a quirky accident rather than evidence of a larger threat. Now comes word of...
28 New Exoplanets Announced
What better indication of the success of our planet hunting efforts than the news out of the American Astronomical Society's annual meeting in Honolulu. There, the California & Carnegie Planet Search team announced at least 28 new planets, with four multi-planet systems among them and two borderline cases that need further investigation. That's a bump of 12 percent in the number of known planets over the last year. Behold: With the exoplanet count now not that far from 250, planetary discoveries are coming fast enough that a certain ennui seems to have settled in among press and public. Sure, Gliese 581 c was big news because we thought it was potentially habitable, but finding more and more gas giants probably won't trigger the public imagination, even if GJ 436 b did cause a ripple because of the presence of water. That ripple lasted only long enough for scientists to explain what kind of water they were talking about. Here's Geoff Marcy (UC Berkeley) on the subject: "From the...
Gliese 581: Right System, Wrong Planet?
New work on Gliese 581's interesting planetary system may prove dismaying for those hoping for a planet in the habitable zone. With two 'super-Earths' and a Neptune class world, this is a system that cries out for close analysis. The Geneva team that detected the super-Earths had calculated surface temperatures on Gliese 581 c at roughly 20 degrees C. What they left out was the likely greenhouse effect of the atmosphere. For habitability -- defined here as the presence of liquid water at the surface -- is not dependent on the central star alone, but also on the properties of the planets circling it. Werner von Bloh (Potsdam Institute for Climate Impact Research) and team tackle the habitability question in terms of atmosphere. From their paper: ...habitability is linked to the photosynthetic activity of the planet, which in turn depends on the planetary atmospheric CO2 concentration, and is thus strongly in?uenced by the planetary dynamics. In principle, this leads to additional...
A Nanotech Comeback for Big Ideas
There was a time when images like that of the space station under construction below were standard issue for futurists. It seemed inevitable that after our first tentative orbital flights, we would quickly graduate to building an enormous platform above the Earth, using it as a base for a Moon landing as well as a research establishment in its own right, even a vacation getaway for the well-heeled. It would eventually be part of the supply chain that would create and support a colony on Mars. The Pastelogram blog featured this futuristic vision by Frank Tinsley recently, done as one of a series of ads that ran in 1958 and 1959 for defense contractor American Bosch Arma. From the ad copy: New vistas in astronomy will be opened up by such a space station, because of perfect conditions for photography and spectroscopy. It will also provide unique conditions for advanced research in physics, electronics, weather prediction, etc. Three such stations, properly placed, could blanket the...
Brown Dwarf Emitting Jets
Brown dwarfs, most of them unobserved, doubtless litter the galaxy. The more we can learn about them and their possible companions, the better for our understanding of how planets form and stars evolve. These minute 'failed stars,' far less massive than the Sun, cannot sustain hydrogen fusion, but they're players in the exoplanet hunt. The brown dwarf 2MASS1207-3932, for example, has a planetary companion of five Jupiter masses, thought to be the first for which an image was obtained. Now we learn that this young star, perhaps eight million years old and surrounded with a protoplanetary disc, is also producing jets of matter. The results, growing out of work at the European Southern Observatory's Very Large Telescope, are surprising. The dwarf's mass is itself only 24 times that of Jupiter, making it the smallest object known to produce such jets. Image: Using ESO's VLT, astronomers found jets coming out from a 24 Jupiter-mass brown dwarf, showing that outflows are rather ubiquituous...
Multiple Planet System Found
Two gas giants discovered around the star HD 155358 raise again the question of planetary formation and the mechanisms behind it. Most planets detected through radial-velocity methods, which measure the effects unseen companions have on a star's motion, have been found to orbit stars that are high in metal content. 'Metals' in this context means elements higher than hydrogen and helium, and of the two primary models for planetary formation, high metal content seems to favor the one known as the core accretion model, about which more in a moment. What to do about a low metal star whose system is dominated by two massive planets? HD 155358 contains only 20 percent of the metal content of our Sun. Such a finding may favor the rival disk instability model. Here the notion is that the rotating disk of gas and dust in a protoplanetary system becomes unstable not long after it forms, causing it to fragment. As clumps begin to appear, they become large enough to cause their gases to collapse...
Carnival of Space #4 Now Available
The Carnival of Space #4 is now up at Universe Today, and is well worth a look to find out what a wide range of writers are saying about everything from terraforming Mars to the linkages between science and science fiction. Ian Musgrave's Astroblog offers good background on GJ 436 b, and I particularly like Universe Today's own take on a story we're currently featuring about the expansion of the cosmos. Lots of new reading here, and busy readers will appreciate the selection process that singled these items out. A sharp editor is a godsend for the information-deluged.
Toward a Disappearing Cosmos
Centauri Dreams' recent post on the eventual merging of the Milky Way with the Andromeda galaxy took us to a future some five billion years from now. But it also speculated on something even more distant in time. What happens if the universe's expansion does not stop accelerating? Eventually the galaxies beyond our own Local Group will exit the visible universe. Astronomers of that era would have no way of knowing those galaxies had ever existed, and would shape their cosmology accordingly. Meanwhile, our Local Group should still be visible -- the merged Andromeda/Milky Way elliptical galaxy and the survivors of the more than thirty galaxies, held together by mutual gravitational attraction, that make up the LG today. These galaxies should remain gravitationally bound despite the effects of the accelerated expansion, according to a paper by Lawrence Krauss (Case Western Reserve) and Richard Scherrer (Vanderbilt) to be published in October. A starry island in an endless black sea....
Deep Space Propulsion via Magnetic Fields
The beauty of magnetic sail concepts -- magsails -- is that they let us leave heavy tanks of propellants behind and use naturally occurring phenomena like the solar wind to push us where we're going. Solar sails, of course, do the same thing, though they use the momentum imparted by photons rather than the energetic plasma stream of the solar wind. And Cornell University's Mason Peck is now suggesting another kind of mission that leaves the fuel behind. Instead of using the solar wind, it taps magnetic fields like those around the planets. As we'll see in a moment, we might one day use this method to send a fleet of micro-probes to Proxima Centauri. But let's examine it first in light of planetary missions, which is what Peck has in mind with his Phase II NIAC study "Lorentz-Actuated Orbits: Electrodynamic Propulsion Without a Tether." What the researcher is proposing is that a spacecraft can be made to accelerate in a direction perpendicular to a magnetic field. We know from Cassini...