Weekend Weblog Musings

Ed Minchau offers up the latest Carnival of Space at his Robot Guy site. Centauri Dreams readers will want to look at Amanda Bauer's presentation of an image taken by the Pluto-bound New Horizons spacecraft. It's actually a composite showing Jupiter and a startlingly nearby Io. We've all seen Jupiter images, of course (thank you Voyager, Galileo, et al.), but take a look at this one to note the plume of the erupting Tvashtar volcano, a stunning reminder of how active this tortured little world continues to be. Space Files has a nice overview of solar sail technologies beginning with Lou Friedman's plans to develop Cosmos-2, a replacement for the lamented sail that perished in its launch attempt back in 2005. We still need to shake out this intriguing concept in space, and with NASA funding for sails in limbo, the private sector is the place to turn. Space Files gets into Japan's recent experiments (useful as we learn how to deploy various sail configurations) and ESA's GeoSail study....

read more

Of Impatience and Stellar Distance

One thing I'm always asked when I talk about interstellar topics is how long it would take a spacecraft like Voyager to get to the nearest star. After explaining how far away Proxima Centauri and the slightly farther Centauri A and B really are, I tell the audience that Voyager, if headed in that direction, would be facing a travel time of over 70,000 years. That usually shifts the conversation considerably, because many people assume that if we can get to the outer planets, the nearest stars can't be that far behind. If only it were so. The Centauri stars are, of course, only the closest known (and who knows, perhaps there's a brown dwarf a bit closer). Assume a space technology able to travel at close to the speed of light and you're still dealing with travel times that amount to years, although time for the crew would be shorted according to those interesting Einsteinian effects that cause the crew of a vehicle traveling at 86 percent of lightspeed to experience half the elapsed...

read more

Probing Exoplanet Atmospheres in Texas

With Hubble's Space Telescope Imaging Spectrograph now out of commission, the study of exoplanetary atmospheres becomes a bit more problematic. But Seth Redfield (University of Texas at Austin) has now used a ground-based instrument to detect the atmosphere of a planet orbiting the star HD189733, some 63 light years away in the constellation Vulpecula. Discovered in 2004, this transiting world is about twenty percent more massive than Jupiter, orbiting its parent ten times closer than Mercury orbits our Sun. Working from the ground is tricky but the odds go up when you observe more than a single transit. Redfield worked with eleven transits observed over the course of a year, using the Hobby-Eberly Telescope (HET) at McDonald Observatory in Austin. Studying the chemical composition of a distant atmosphere involves taking a spectrum during a transit and another when no transit is occurring. Working with the difference and comparing results over multiple transits helps you put together...

read more

Site Security Bug Fixed

It's been a long night. A bug in one of our security software plugins caused all users to run into problems when trying to post messages. Sorry about this! I think I've finally resolved the matter and you should find things back to normal. If you tried to post and were unable to get site access, please try again, and thanks for your patience.

read more

Allen Telescope Array: Listening for ETI

By Larry Klaes Larry Klaes' look at the Allen Telescope Array reminds us of the power of philanthropy at getting serious projects funded. It's a topic we'll be re-visiting as the Tau Zero Foundation comes online early in the coming year. I'm reminded also of the One Laptop Per Child project, which is seeing private donations for these educational tools supplanting government shortfalls in some developing countries. Properly targeted, the philanthropic dollar is a powerful thing, and think of the results if the ATA finds a genuine signal! Cornell astronomer and science popularizer Carl Sagan left quite a legacy in a number of science fields, including and especially those which were considered to be somewhat fringe at one time. One prime example of his support of a science field that was not universally accepted in earlier eras was SETI, the Search for Extraterrestrial Intelligence. At a time when many astronomers did not seriously consider the possibility of other beings existing...

read more

Voyager’s Latest, and Hopes for Europa

When the last Voyager pictures from Neptune (and perhaps even more eagerly awaited, the images of Triton) came in back in 1989, I distinctly recall the sense of letdown that set in the following week. All those spectacular Voyager findings were, I then assumed, a thing of the past. But as we've seen, the Voyagers are robust little spacecraft, pushing on toward the heliospause and the edge of interstellar space. Still functional, one or both may be sending us signals when they make this final transition within the next ten to twenty years. Which is not to say we don't need follow-up missions to explore this territory (Innovative Interstellar Explorer, using radioisotope methods to power an ion engine, immediately comes to mind), but what a grand story the Voyagers continue to write. And consider this finding: Because the two spacecraft took entirely different routes, Voyager 2 is crossing the termination shock region some 20 billion kilometers away from Voyager 1's present location....

read more

Out Among the Dark Stars

You would think that a star anywhere from 400 to 200,000 times wider than the Sun would be fairly easy to detect. But not if it's a 'dark star,' the name for a new, theoretical entity about to make its appearance in Physical Review Letters. Astrophysicist Paolo Gondolo (University of Utah) makes the case that dark matter would have affected the temperature and density of the gases that formed the first stars. Dark stars would mostly contain normal matter -- hydrogen and helium -- but they would have been much larger than the Sun, glowing largely in the infrared. So how would the early universe have produced a dark star? Gondolo looks at neutralinos, one type of the weakly interactive massive particles (WIMPS) that may explain dark matter. Calculating how dark matter would have affected the earliest stars, the team's findings suggest that dark matter neutralinos would have annihilated each other, producing quarks and anti-quarks. A proto-stellar cloud trying to shrink into a star...

read more

Of Young Stars and Ancient Planets

Since we've just been looking at young stars -- protostars, at that -- the news from Ann Arbor seems timely. Astronomers at the University of Michigan are announcing systems around UX Tau A and Lk Ca 15, young stars each, located about 450 light years away in the Taurus star formation region. What they're actually observing at infrared wavelengths are gaps in the protoplanetary disks around these stars, the assumed result of planets sweeping the area clear of debris. Unlike the infant star-in-the-making we looked at yesterday, UX Tau A and Lk Ca 15 are old enough -- about a million years each -- for planetary formation. Both are still pre-main sequence, deriving their energy from gravitational contraction instead of hydrogen-to-helium burning. To reach any conclusion about what's happening around them, the Michigan team has to rule out photoevaporation, which is what happens when the dust and gas of a protoplanetary cloud heats up, evaporates and begins to dissipate. Catherine...

read more

Two Views of a Stellar System in the Making

A flattened envelope of gas and dust surrounding the young protostar L1157 gives us some idea of what our Solar System may have looked like as it began to form. The object is only a few thousand years old, the central star hidden, with its envelope detectable in silhouette as a black bar. The view from the Spitzer Space Telescope (below) shows how infrared can look within the dust to see structure. While the telescope cannot penetrate the envelope (itself hard to see in this image), enormous jets whose hottest points appear in white are clearly defined. These jets are interesting. They're being emitted from the protostar's two magnetic poles, and are approximately one and one half light years from end to end. The envelope of material is too thick for Spitzer to penetrate and appears in black, its thickest part visible as a black line crossing the jets. The envelope is roughly centered on the polar jets and perpendicular to them, showing up more clearly in the grayscale image below,...

read more

Voyager 2 Closes on Termination Shock

When I use the term 'interstellar mission,' people assume I'm talking about a far future crewed mission to a star like Alpha Centauri or Epsilon Eridani. But the two Voyager spacecraft are on an interstellar mission of a sort, meaning they're eventually going to leave the Solar System entirely and head into true interstellar space. Because the Voyagers' power looks sound enough to keep sending data for another decade or more, we should thus get an interesting look at how our solar neighborhood differs from the medium that Sol and all the other stars in the Orion Arm swim in. Image: Voyager 1 and Voyager 2 leaving the solar system. Image Credit: NASA/Walt Feimer. The termination shock is that place where the solar wind -- charged particles flowing outward from the Sun -- slows below the speed of sound. It should be a tricky and mutable place, there being no fixed boundary out there some eight billion or so miles from our star. Instead, the termination shock should vary depending on...

read more

Messier 74 In All Its Glory

Image (click to enlarge): Hubble has sent back an early Christmas card with this new NASA/ESA Hubble Space Telescope image of the nearby spiral galaxy Messier 74. It is an enchanting reminder of the impending season. Resembling glittering baubles on a holiday wreath, bright knots of glowing gas light up the spiral arms; regions of new star birth shining in pink. Credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration. Simply too beautiful not to post immediately on an otherwise quiet day.

read more

On Planets in the Galactic Bulge

One thing we'd like to know about exoplanets is where they are likely to be found. We've located more than 250 of them, but most are confined within about 650 light years. That's very much in the local neighborhood by galactic standards -- our methods have led us to nearby, bright stars. We do have a small number of planets detected through microlensing, some as far away as 6000 parsecs (about 19,500 light years), but our radial velocity detections, which form the great bulk of the current catalog, tend to be confined to relatively close higher mass stars. Other similarities? The exoplanet host stars we know about are generally metal rich. And because they're nearby, they're located in the galactic disk. This leaves us with some key questions, among them whether planets are equally abundant elsewhere in the galaxy. Other issues: Do planets occur with the same frequency around lower mass stars? Does the presence of heavy elements favor particular parts of the galaxy for planet...

read more

Interstellar Sails and Their Precursors

Lou Friedman's work on solar sails dates back to his days at the Jet Propulsion Laboratory where, in the 1970s, his team began work on a rendezvous mission with Halley's Comet. It was a mission that never flew, but you can read about its planning stages in Friedman's book Starsailing: Solar Sails and Interstellar Travel (Wiley, 1988). That title is, as far as I know, the first book-length study of this technology, though it has since been joined by Colin McInnes' key text Solar Sailing: Technology, Dynamics and Mission Applications (Springer/Praxis, 1999). Now executive director of The Planetary Society, Friedman's interest in solar sails led to his work on the Society's Cosmos I mission, unfortunately lost during the launch attempt in 2005. His interest in interstellar issues remains keen as well, as evidenced by an article he recently wrote for Professional Pilot magazine. "Making Light Work" runs through solar sail basics for an audience that may seem surprising, but I can tell...

read more

Mothra Invades the Science Cabaret

By Larry Klaes The Monday after the Thanksgiving holiday in the States is always gloomy as people readjust to work after the long weekend. So let's do something light-hearted for today with a look at what evolution can produce in the hands of Japanese film directors. Larry Klaes considers Mothra, a tale of a small creature grown large, and the demands its unexpected size would make if such things existed in the real world. Larry has been to a 'science cabaret' inspired by the Café Scientifique movement, which brings science to the public in informal settings. What better format to convert cinematic fantasy into science? We need to get interstellar ideas into such venues. When looking for lessons in science, one might be forgiven for not considering the Japanese monster films of the latter half of the Twentieth Century as a prime source for such material. Yet a lesson in science is exactly what was extracted from one particular member of that genre, courtesy of entomologist...

read more

Planetary Systems in Miniature

'Planemos' are planetary mass objects not much larger or heavier than Jupiter. The emerging technical term for them is 'isolated planetary mass objects' (IPMO), although the nomenclature is still evolving. Back in 2006, Ray Jayawardhana (University of Toronto) challenged the American Astronomical Society's Calgary meeting to consider how our definition of 'planet' is blurred by planemos that act much like little solar systems. Consider Jupiter itself, a small system doubtless born with its own disk of dust and gas that produced the raw materials for its larger moons. Backing up such thinking was the brown dwarf 2M1207, known to have a planetary companion eight times the mass of Jupiter and now shown to be surrounded by a disk of its own. Thus it comes as no surprise that Jayawardhana, following up this work with Alexander Scholz (University of St Andrews), has been using the Spitzer Space Telescope to study eighteen planemos in a star cluster in Orion. At three million years old,...

read more

Is Luna a Celestial Rarity?

Having just written about dust formation around HD 23514, a Sun-like star in the Pleiades, I was drawn to this quote by Nadya Gorlova (University of Florida, Gainesville), whose recent work suggests that if moons like our own were common, we'd be seeing more dust than we do around other stars. "When a moon forms from a violent collision, dust should be blasted everywhere," says Gorlova. "If there were lots of moons forming, we would have seen dust around lots of stars -- but we didn't." By contrast, the UCLA study on the Pleiades sees major collisions as common in young solar systems, though to be sure it didn't focus its conclusions on the 30 million year age range, as the Florida study did. Gorlova's team used data from the Spitzer Space Telescope and operated under current assumptions about lunar formation, in which an impactor the size of Mars is thought to have struck the Earth, creating a vast debris field that fell into Earth orbit and eventually became the Moon. The theory...

read more

‘Doomsday Vault’ Prepares to Open

One of the things I like about Norway is that the government there requires at least one percent of public building budgets be devoted to artwork. Thus the plan for the Svalbard Global Seed Vault, which is designed as a hedge against planetary catastrophe. At the Spitsbergen site near the town of Longyearbyen, highly polished metal sheets installed on the roof and front of the entrance portal will create a sparkling sculpture visible for miles around, lit by the Sun or by fiber-optics during the long Arctic winters. I would imagine Norwegian artist Dyveke Sanne took the commission as quite a challenge. How do you capture the spirit of what is essentially a fail-safe backup of the world's vital food crops? Assume for a moment that we do get a massive blow one day from an Earth-crossing asteroid and our survivors, provided there are some, will want to re-start agriculture with the basic crops -- wheat, barley, peas, corn. And not just the basics, for it may be necessary to start over...

read more

Cosmic Ray Origins Quickly Back in Play

Interesting to see how quickly the story on high-energy galactic cosmic rays has shifted in the past week. Recent work at the Pierre Auger Observatory in Argentina pointed strongly to the centers of active galaxies, where supermassive black holes are found, as the likely source. These Active Galactic Nuclei (AGN) stood out in analysis of the 27 highest energy events recorded at the Auger site because known AGNs seemed to correlate (in terms of direction) with the incoming cosmic rays. In any case, the idea that these tortured galactic centers could be the source made obvious and intuitive sense. But is the origin of these most powerful of cosmic rays -- with energies up to 100 x 1018 electronvolts -- now understood, or is it just a statistical correlation that won't stand up to continued scrutiny? The University of Utah-based High Resolution Fly's Eye (HiRes) collaboration has been trying to check the correlation based on events in northern hemisphere skies. And here's the gist, as...

read more

Exoplanets: Where Will We Be by 2020?

Where will we be in the exoplanet hunt by the year 2020? A few of my own guesses would take this form: We should, within even the next year or two, have detected a terrestrial world in a truly unambiguous position within the habitable zone of a star. That star will doubtless be a red dwarf, like Gliese 581, but we can hope for a result that doesn't lend itself to so many conflicting interpretations. The detection method will surely be planetary transit, but even by 2020 we may not know if life exists there. It's also easy to surmise that by 2020 we'll have a terrestrial-class world located within a stellar system not completely dissimilar to our own; i.e., one involving a star much like the Sun, orbited by a rocky world in the habitable zone. We can hope that by 2020 the tools will have been put in place to do spectroscopic observations of the planetary atmospheres involved in small rocky worlds, though so much depends on budgets and the needed tuning up of exquisitely sensitive...

read more

Planet Formation in the Pleiades

I've always enjoyed Lynette Cook's work. As you can see in the image below, this space artist captures the drama of celestial events by drawing on recent findings. Like Chesley Bonestell, Cook can take you to an exotic place and leave you staring, but her focus is tighter, homing in on exoplanets as filtered through ongoing work at observatories worldwide. The wonders she'll have to work with as we find more and more such worlds can only be imagined. The dazzling collision below is her take on what may be happening as rocky planets form around HD 23514. The star's designation doesn't jump out but its location does, the oft-studied Pleiades star cluster. Joseph Rhee (UCLA) and collaborators have been working infrared wavelengths using the Gemini North Telescope (Mauna Kea) and space-based infrared instruments, measuring the hot dust around this 100-million year old star. HD 23514 is Sun-like enough to add to the intrigue of this exercise, and it's orbited by hundreds of thousands of...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives