A New Planet and Its Implications

What are the two most fundamental properties of the stars we study? If you said mass and chemical composition, you get the prize, at least as determined by the California & Carnegie Planet Search team. Their new paper lays out the discovery of a gas giant orbiting the M-class red dwarf GJ 317. And they first discuss the discovery in the context of the core accretion model for planetary formation, and the correlation between the metallicity of a star and the chances of its harboring detectable planets. The notion seems sound: The host star inherits its characteristics from the same disk out of which the planets around it form. If you increase the amount of metals in the system (metals being defined as elements higher than hydrogen and helium), you increase the surface density of solid particulates, and that ought to bump up the growth rate for the core materials that become planets. In a gas giant, such a core then becomes massive enough to capture a gas envelope. But the case around...

read more

Notes & Queries for the Weekend

Those who have toiled in the vineyards of literary studies may recognize the allusion in my title to Notes & Queries, a journal collecting short pieces on a variety of research topics. Back in grad school I was forever looking up odds and ends in its pages related to the Anglo-Saxon alliterative line. A far cry from the Kuiper Belt and extrasolar debris disks! But I need the occasional short feature here that, like Notes & Queries, collects things I want to highlight, each interesting, I hope, and useful to the interstellar-minded. The indefatigable Brian Wang offers a lengthy piece on External Pulsed Plasma Propulsion and nuclear rockets in general. Have a look to see a NASA study from 2000 and its design principles for EPPP, which uses thrust from plasma waves in ways reminiscent of Project Orion. The post also studies the old NERVA designs and offers numerous links for follow-ups. "We just have to have the courage to become a truly interplanetary civilization," Brian argues in...

read more

Liquid Water in the Kuiper Belt?

As if New Horizons didn't already have its work cut out for it, now we have the possibility of seeing a frigid geyser going off on Pluto's companion Charon when the probe arrives in 2015. The process is called cryovolcanism, the movement of liquid water onto the surface where it freezes into ice crystals. New high-resolution spectra obtained at the Gemini Observatory (Mauna Kea) show ammonia hydrates and water crystals spread patch-like across the surface of the distant world. The suggestion is that liquid water mixed with ammonia is pushing out from deep within Charon, leading to an interesting conclusion. Thus graduate student Jason Cook (Arizona State), who led the team surveying Charon's surface: "Charon's surface is almost entirely water ice. So it must have a vast amount of water under the surface, and much of that should be frozen as well. Only deep inside Charon could water be a liquid. Yet, there is fresh ice on the surface, meaning that some liquid water must somehow reach...

read more

A Close Stellar Encounter?

Astronomers have found a highly elliptical debris disk around the star HD 15115, one that seen virtually edge-on from Earth gives the appearance of a needle running straight through its star. The disk was first imaged by the Hubble Space Telescope in 2006, its unusual shape causing astronomers to request near-infrared imaging by the W.M. Keck Observatory in Hawaii. Keck's images, in conjunction with the Hubble data, revealed the disk's uncommon blue color. So what's going on around this F-class star? First of all, let's distinguish between protoplanetary disks, which give birth to planets, and debris disks like this one, which resemble our own Kuiper Belt. The latter are made up of the remnants of planetary formation. This debris disk seems to extend some ten times further from its star than the Kuiper Belt, according to a Keck news release, though our limited knowledge of the Kuiper Belt makes me a bit wary of the statement, as the latter's dimensions are still under active...

read more

Odds on the Human Future

I'm not very good at playing odds, though I do seem to pick up money routinely from a friend who is a Chicago Cubs fan (this year may be different -- we'll see). But bringing odds into the discussion of the Fermi Paradox can be an interesting exercise, and Princeton astrophysicist Richard Gott has already given the matter some thought. Let's assume, for example, that you and I are not particularly special. We're simply representative of the living beings who populate the universe. If that's the case, the odds say we're probably living in one of the older civilizations, and one of the larger ones. That's because more people would have lived in these cultures than in short-lived, smaller civilizations. It's the Copernican principle at work, the notion that there is nothing special about the particular moment at which we're observing what's around us. Gott would say this has implications for other worlds. "The sobering facts," Dr. Gott says, "are that in a 13.7 billion-year-old...

read more

The Sun in a Crowded Sky

We're so used to thinking of our Sun as a solitary object that having two Suns in the sky inspires the imagination of artist and writer alike. But what about whole clusters of stars? Evidence is mounting that the Sun was actually born in such a cluster. That's quite a jump from the era, not so long ago, when astronomers assumed stars like ours formed without companions, but cosmochemists like the wonderfully named Martin Bizzarro (University of Copenhagen) think they have the data to prove it. So here's the new notion: Most single stars like the Sun evolve in multiple systems, clusters of stars that also contain massive stars that burn their hydrogen and explode while the cluster is still producing young stars. If this is the case, then we should expect the early history of the surviving younger stars to be affected by the nearby fireworks. Bizzarro's team studied short-lived isotopes like aluminum-26 (26Al) and iron-60 (60Fe) as found in meteorites to see whether stellar debris from...

read more

Probing Radiation Hazards to Future Missions

A human presence in space is one day going to mean something more than putting a crew into low Earth orbit or even going to the Moon. But longer journeys -- to Mars, to Jupiter's moons and beyond -- count among their many challenges the problem of radiation. To solve it, we'll have to start closer to home, puzzling out our own local radiation hazards from the Van Allen belts, those regions of high-energy electrons and ions caught within the magnetic field of Earth. Because electromagnetic waves can accelerate electrons, causing so-called 'enhancement events' or surges that are up to a thousand times more dense than the norm. The danger to spacecraft electronics can be acute. A powerful solar storm in 2003, for example, caused instrument damage to several spacecraft and may have been the cause of the loss of two Japanese satellites. We're learning that we need radiation-hardened systems that can withstand such battering. The 2003 event -- actually two storms that occurred back to back...

read more

Nanotech, Colony Worlds and the Long Jump

An obvious objection to the idea of human journeys to the stars is time -- if we can't find ways to reduce travel time to well within a human lifetime, so the thinking goes, then we'll have to stick with robotics. But expand the timeframe through multi-generational ships and you change the parameters of the debate. The notion of a multi-generational 'worldship' whose crewmembers have long forgotten their actual circumstance is a classic trope of science fiction, with obvious references like Robert Heinlein's story "Universe" (1941), later reprinted in Orphans of the Sky, and Brian Aldiss' Non-Stop (1958), published in the US as Starship. But maybe such a crew wouldn't forget where it was going. For that matter, would the people aboard a true worldship, one that took, say, 5000 years to make the average interstellar crossing, really consider themselves a crew? They might prefer the term 'inhabitants' when describing themselves, because they would be living inside a structure so vast...

read more

Outer Gas Giants Rare?

Centauri Dreams sometimes gets e-mail from readers asking how research results can be so contradictory. We've discussed gas giants around red dwarf stars, for example, noting theories that such planets are rare in this environment. And then we come up with stars like Gliese 876 and GJ 317, both red dwarfs, and both sporting not one but two gas giants as companions. But stand by, for in a moment we'll look at new evidence that outer gas giants are indeed rare, and not just around M dwarfs. What's going on? The answer is that exoplanetary studies are a work in progress, and will continue to be as far into the future as I can see. We have identified over 200 exoplanets in a galaxy of several hundred billion stars. You bet we're going to find anomalous situations that challenge every theory we have. And the idea is to put hard scientific work out there for review and critique, noting methodologies and explaining conclusions, thus letting other scientists have a go at the same data. Those...

read more

Water Vapor on a Hot Jupiter

Probing planetary atmospheres is tricky business at the best of times, but when you're limited to planets you can't even see, the project seems well nigh insurmountable. Nonetheless, astronomers using the Spitzer space telescope are having some success working in the infrared. They focus on transiting hot Jupiters, and earlier this year were able to obtain spectra of exoplanetary light from two such worlds, HD 189733b and HD 209458b. We discussed that work earlier and noted that no water vapor was found in the atmosphere of either planet, despite earlier predictions that it would be. Now a team led by Giovanna Tinetti (Institute d'Astrophysique de Paris) has made further observations of HD 189733b, studying changes in the infrared light from the star as the planet transits, and thus filters the light through its own planetary atmosphere. Working at three different wavelengths, the study showed the clear signature of water. Image: This plot of data from NASA's Spitzer Space Telescope...

read more

Planetary Debris and Its Effects

Since we've just been looking at stellar metallicity and planet formation, news from the European Southern Observatory catches my attention. A new paper from ESO astronomers discusses the question of planetary debris falling onto the surface of stars, and its effects on what we observe. Evidence has been accumulating that planets tend to be found around stars that are enriched in iron. On average, stars with planets are almost twice as rich in metals as stars with no known planetary system. But what exactly does this result mean? On the one hand, it's possible that stars that are rich in metals naturally enhance planet formation. But the reverse is also possible: It could be that debris from the planetary system could have polluted the star itself, so that the metals we see aren't intrinsic to the star. Bear in mind that a stellar spectrum shows only the star's outer layers, so we can't be sure what's at the core. And in-falling planetary debris would stay in the star's outer...

read more

Extended Mission to Study Extrasolar Planets

The Voyager Interstellar Mission sounds like something out of Star Trek, but it is in fact the extended mission of the doughty spacecraft that taught us so much about the outer Solar System. An extended mission can be just as valuable, and sometimes more so, than the original -- think about the continuing adventures of our Mars rovers, working well beyond their projected timelines. In Voyager's case, we're learning much about how the Solar System behaves as it moves through the interstellar medium, and about the heliopause, where the Sun's solar winds effectively lose their dominance over the winds from other stars. Now the Deep Impact spacecraft, which provided such spectacular scenes of Comet Tempel 1, will acquire an extended mission of its own, and in two parts. The one that catches my eye is called Extrasolar Planet Observation and Characterization (EPOCh), which will turn the spacecraft loose on the study of several nearby bright stars already known to have gas giant planets...

read more

Red Dwarfs and Planetary Anomalies

The challenge of working with a small sample of exoplanetary systems -- and one tilted toward those detectible through radial-velocity methods -- is that building up solid models of planet formation is tricky. I'm thinking about this in terms of the recent planetary conference at Santorini, and also recalling work performed at the University of Texas, where Michael Endl and team have looked into the relationship between planets around red dwarfs and the metallicity of their stars. It's an intriguing question and one that only continuing observations can nail down. Metallicity refers to the presence of elements higher than hydrogen and helium in a star's composition, something we can determine through spectroscopic analysis. Endl and co-author Fritz Benedict, as originally noted in this post, worked with graduate student Jacob bean on a study of three dwarfs known to have planets: Gliese 876, Gliese 436 and Gliese 581, noting their lower values of metallicity compared to stars of...

read more

Looking for Life Unlike Our Own

In another decade or so, we should have space-based telescopes actively looking for life around other stars by studying the atmospheres of exoplanets. In the beginning, it will make sense to look for bio-chemistries similar to our own. This isn't some kind of species chauvinism but simple realism. We know more about how life works on Earth than it might in far more extreme environments, so we'll turn first to Earth analogues, seeking the bio-signatures of carbon-based metabolisms on worlds with liquid water. But as we explore our own Solar System, the situation will continue to evolve. If life exists on Enceladus, or Ceres, or in some bizarre Kuiper Belt ecosystem, it's not going to be operating on the same principles as life here on Earth. These aren't Earth analogues, and moreover, they are places for which we have the possibility of lander and rover exploration within the forseeable future. We'll want to widen our range so we don't overlook a form of life that isn't immediately...

read more

The Hydrocarbons of Hyperion

We're getting a closer look at Saturn's moon Hyperion, the result of data analysis following Cassini's flyby in September of 2005. Using near-infrared and ultraviolet spectroscopy, researchers have been able to analyze the moon's surface composition, with results suggestive of water and carbon dioxide ices as well as an analysis of dark material indicating hydrocarbons. That's a mix of materials not unlike what we've found in comets and probably similar to what we'll detect in Kuiper Belt objects. Here's Dale Cruikshank (NASA Ames), lead author on the paper: "Of special interest is the presence on Hyperion of hydrocarbons -- combinations of carbon and hydrogen atoms that are found in comets, meteorites, and the dust in our galaxy. These molecules, when embedded in ice and exposed to ultraviolet light, form new molecules of biological significance. This doesn't mean that we have found life, but it is a further indication that the basic chemistry needed for life is widespread in the...

read more

New Propellantless Thruster Experiments

A mission to another star is quite a jump for today's technologies and will be for some time to come. But if you're thinking of robotic payloads rather than human, it's at least in the range of possibility. Fast 'Sun-diver' trajectories that could get a fly-by probe to Alpha Centauri in something on the order of a thousand years are not beyond question, and Robert Forward-style lightsails, pushed by gigantic lasers, might reduce that time to a century or less, using a Solar System-wide infrastructure we might be able to build with the help of nanotechnology in the next century. Human crews, though, are quite another matter. The problem seems to demand breakthrough technologies, one of which could be the propellantless propulsion being investigated by James Woodward (California State University, Fullerton). The vast amounts of propellant needed for chemical or even nuclear missions seem to rule out their use in practical crewed spacecraft. A propellantless thruster would resolve the...

read more

A Big Bounce After All?

If anything ever seemed completely unknowable, it's the answer to the question of what existed 'before' the Big Bang. But it's an issue laden with unusual interest. If a previous universe collapsed in a 'Big Crunch,' will that somehow become the fate of our own? Now a research team working under Martin Bojowald (Pennsylvania State) is developing its own answers to these questions, relying on the theory known as quantum loop gravity. The grand goal of unifying Einstein's General Relativity with the perplexing world of quantum mechanics is necessary but highly elusive. We need some way to look at the all but inconceivable energies that must have dominated the universe in its earliest period. And if you accept the idea that quantum loop gravity can do the job (it flows out of Penn State's Institute for Gravitational Physics and Geometry), then the Big Bang doesn't close off all knowledge of what went before. Bojowald and team talk about the 'Big Bounce,' a time when gravity becomes so...

read more

More on NIAC’s Closure

NASA's Institute for Advanced Concepts has now announced that its operations will cease on August 31st of this year. Director Robert Cassanova takes justifiable pride in the Institute's accomplishments, and I want to quote from the letter he and associate director Diana Jennings posted on the NIAC site the other day: Since its beginning in February 1998, NIAC has encouraged an atmosphere of creative examination of seemingly impossible aerospace missions and of audacious, but credible, visions to extend the limits of technical achievement. Visionary thinking is an essential ingredient for maintaining global leadership in the sciences, technology innovation and expansion of knowledge. NIAC has sought creative researchers who have the ability to transcend current perceptions of scientific knowledge and, with imagination and vision, to leap beyond incremental development towards the possibilities of dramatic breakthroughs in performance of aerospace systems. A key fact that many people...

read more

AB Doradus C: New Methods for Faint Objects

Among the numerous problems in actually imaging an exoplanet is the fact that telescopes produce artifacts that can mask the faint planetary signature. Light diffracts as it passes through the aperture of an optical telescope, causing a series of concentric rings to surround the observed star. This effect, known as an Airy pattern, has a bright disk at center whose size determines how small an object the telescope can see. But there are always ways of making a virtue of necessity. A team led by Niranjan Thatte (Oxford University) and Laird Close (University of Arizona) have developed a technique that effectively uses the artifacts produced by diffraction to determine the position of a dim stellar companion and retrieve its spectrum. The idea is that when the wavelength of light being studied is changed, the telescope artifacts can be seen to shift position, while the actual object around the star will not move. Here's how an ESO news release puts the matter: So if the image has an...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives