The Holocene: End of an Epoch?

Do technological cultures survive their growing pains? Species extinction through war or unintended environmental consequences -- a cap upon the growth of civilizations -- could be one solution to the Fermi question. They're not here because they're not there, having left ruined cities and devastated planets in their wake, just as we will. It's a stark picture whether true or not, one that makes us ponder how the things we do with technology affect our future. Consider the question in terms of time. The Holocene epoch, in which we live, began about 10,000 BC, incorporating early periods of human technology back to the rise of farming amd the growing use of metals. And while there has been scant time for true evolutionary change in animal and plant life during this short period, it is certainly true that extinctions of many large animals as we move from the late Pleistocene into the early Holocene have not only changed the world through which humans moved but may have been at least...

read more

Dark Energy: Shaping Our Tools

Can measuring the positions and velocities of thousands of galaxies provide insight into the nature of dark energy? If so, we may have found a way to study what is perhaps the most puzzling question in astrophysics, the discovery that the expansion of the universe is proceeding faster today than it did in the past. Armchair theorists love dark energy because we know so little about it, and I routinely get e-mails offering to tell me exactly what dark energy is, few of which have any bearing on current observation or theory. But that's the way of mysteries -- they incite comment -- and as mysteries go, dark energy is a big one, perhaps the biggest now stirring the astrophysical cauldron. If we assume a dark energy producing a check on the gravitational pull of all matter in the cosmos, we've got the attention not just of cosmologists but propulsion theorists, who would love to find out how such a repulsive force might work. And if there is no such thing as dark energy, then...

read more

Putting the Pieces Together in Space

By Larry Klaes Tau Zero journalist Larry Klaes takes a look at Mason Peck's work with reconfigurable space structures. Anyone who ponders the future of large structures in the Solar System -- and this might include space-based telescopes, O'Neill habitats or perhaps one day enormous lenses of the sort Robert Forward envisioned -- will wonder how such creations can be assembled. Potential solutions may one day grow out of Peck's work, until recently funded by NIAC. Centauri Dreams also wonders how such theories will be supplemented by nanotechnological techniques that may one day return us to the era of thinking big in environments far from home. Space is a promising but often difficult environment to work in. A typical spacecraft has to deal with a near vacuum, extreme temperatures, radiation fields, and micrometeoroids. With space 'starting' at one hundred miles above Earth's surface, a region attainable at present only with expensive rockets, sending up numerous vehicles that have...

read more

Fast Mover from the Large Magellanic Cloud

Stars being kicked out of the Milky Way -- so-called 'hypervelocity stars' -- follow a mechanism that seems understood. We know there is a supermassive black hole at galactic center, and it is likely the cause of the ejection of such stars from our galaxy. Nine stars have been found that fit this description, all of them over 50,000 parsecs from Earth. But the tenth is an anomaly, a young star ejected not from the Milky Way but from the Large Magellanic Cloud. A black hole is assumed to be the cause here as well, although the culprit has yet to be identified. Image: A 'hypervelocity star,' shown flung from the Milky Way's center. Now a similar star has been found exiting the Large Magellanic Cloud. Credit: Ruth Bazinet/Harvard-Smithsonian Center for Astrophysics. One thing that assists researchers in identifying stellar origins is the fact that stars in the Large Magellanic Cloud (LMC) have their own particular characteristics. Alceste Bonanos (Carnegie Institution) was on the team...

read more

First Look at Approaching Asteroid

The 70-meter Goldstone antenna in the Mojave Desert has begun observations of 2007 TU24, the asteroid that will pass 538,000 kilometers from the Earth on January 27-28. Early indications are that the object is asymmetrical, with a diameter of approximately 250 meters. Close pass by the Earth is to occur on January 29 at 0833 UTC, with no chance of a strike. Says JPL's Steve Ostro: "With these first radar observations finished, we can guarantee that next week's 1.4-lunar-distance approach is the closest until at least the end of the next century. It is also the asteroid's closest Earth approach for more than 2,000 years." Image: These low-resolution radar images of asteroid 2007 TU24 were taken over a few hours by the Goldstone Solar System Radar Telescope in California's Mojave Desert. Image resolution is approximately 20-meters per pixel. Next week, the plan is to have a combination of several telescopes provide higher resolution images. Credit: NASA/JPL-Caltech. Now we can...

read more

38th Carnival of Space

Sorting Out Science offers the most recent Carnival of Space in a noir-ish style that recalls the detective pulps of years gone by, not to mention many a film noir itself (Out of the Past may be my favorite, but there were so many terrific movies in the genre). I always pick one blog entry with relevance for interstellar watchers, and this week it's the work of Quasar9, with a look at Hubble images that cover one of the largest expanses of sky ever observed by the instrument. The distortion of galactic shapes revealing the presence of dark matter makes fascinating reading, said light being bent by the massive gravitational field involved in the dark matter distribution around the observed supercluster. Once again we're in the realm of gravitational lensing, a phenomenon proving useful from the galactic cluster level to the hunt for distant exoplanets.

read more

A New Earth Crosser and an Old Impact

With the news that an asteroid called 2007 TU24 will pass 538,000 kilometers from Earth on January 29, attention turns to the Catalina Sky Survey, which discovered this near-Earth object last October. The asteroid is thought to be between 150 and 600 meters in diameter, and should become visible to amateur astronomers in late January. The sky map below shows its track near Earth close approach as seen from Philadelphia, but you can generate personalized ephemeris tables here. The Near Earth Object Program is quick to point out that 2007 TU24 poses no threat to Earth during the upcoming encounter, and also notes that objects of this size are thought to pass this close to our planet every five years or so. With an estimated 7000 discovered and undiscovered asteroids in near-Earth orbits, let's keep the Catalina Sky Survey and other programs well funded. The next known close approach by an asteroid of this size will be in 2027, all of which should remind us of the need to get an...

read more

Black Holes May Fuel Antimatter Cloud

Those gamma rays coming out of galactic center, flagging the presence of an antimatter cloud of enormous extent, have spawned few explanations more exotic than the one we consider today: Black holes. Primordial black holes, in fact, produced in their trillions at the time of the Big Bang and left evaporating through so-called 'Hawking radiation' ever since. That's the theory of Cosimo Bambi (Wayne State University) and colleagues, who are studying the same antimatter cloud we recently examined here in terms of its possible connection with low mass X-ray binary stars. Hawking radiation offers a mechanism for small black holes to lose mass over time. But since the phenomenon has never been observed, the upcoming launch of the GLAST (Gamma-ray Large Area Space Telescope) satellite again looms large in significance. GLAST should be able to find evaporating black holes, assuming they are there, and there is even some possibility that the Pierre Auger Observatory may eventually detect tiny...

read more

A ‘Super Earth’ Around GJ 436?

The closest we've come so far to identifying Earth-like planets around other stars is in the identification of so-called 'super Earths.' Calculations designed to model the composition of such planets say that worlds up to about ten Earth masses are rocky rather than gaseous. Some of these, as we have in the case of Gliese 581, have even excited interest in their possible habitability. We'd like to find ways beyond the now conventional radial velocity and transit studies to identify more such worlds. Now a new planet may have been found around GJ 436, a red dwarf already known to host a Neptune-mass planet in a tight 2.6 day orbit. This is interesting work because of the methods used. Ignasi Ribas (Institut de Ciències de l'Espai, Spain) and team have taken a close look at the known planet and are arguing it is possible to identify a second world, a super-Earth, through the telltale variations in the transit duration of GJ 436b, the already known 'hot Neptune.' Giving the game away is...

read more

The Stars and the Odds

The universe so frequently sends the message that we humans are not entirely special. In fact, the notion of us as 'privileged observers' seemed to be dead as recently as a few years ago. Over the centuries we had learned that the Sun did not revolve around us, nor was the Sun itself the center of the cosmos, and with the understanding of its true position in a galaxy of stars, Sol became just another G-type star circled by planets. The recent 'rare Earth' hypothesis does challenge the idea that our planet is of a kind likely to be found elsewhere, but exoplanet discoveries will soon tell us whether or not Earth-like worlds really are common. We may be getting used to the idea of Earth as just one of the vast billions of planets that are doubtless sprinkled through the Milky Way, but we have a long way to go in terms of our thinking about the future. For the one place where that sense of privilege seems to remain is in the idea that having achieved our planetary dominance, we are...

read more

From Mercury to Centauri B

Centauri Dreams' rarely spends time close to the Sun, preferring to focus on stars other than our own, and their planets. But the MESSENGER spacecraft's close pass by Mercury, leading eventually to orbit, does have an interstellar connection in the person of project scientist Ralph McNutt, who is prominent not only in exploring the closest planet to Sol but also in planning a mission that would be our farthest yet, the Innovative Interstellar Explorer attempt to study nearby interstellar space. Fire and ice. McNutt (Johns Hopkins University Applied Physics Laboratory) obviously enjoys working at the extremes, and one hopes for an outcome for IIE just as successful as MESSENGER has enjoyed thus far. Meanwhile, Mercury looks more or less as expected, but don't let that fool you. As Greg Laughlin points out at his systemic site, we're looking at vast stretches of terrain that have never before been seen, our earlier views of Mercury having been delivered by Mariner 10 flybys that saw...

read more

Enceladus: Making the Case for Life

Thoughts on Enceladus as a home to life have kept astrobiological debate lively, an unexpected but welcome development from the Cassini mission. The interest is understandable: Cassini has shown us plumes that seem to be the result of some kind of geothermal venting, with liquid water and geothermal energy sources all possible drivers for the formation of life. We don't exactly know what's going on here, but the possibility of a hydrological cycle -- liquid, solid, gas -- has kept theorists active, as witness a research note by Christopher Parkinson (Caltech) and team. The early Earth serves as a possible model for life elsewhere. With photosynthesis not available, life would depend on abiotic sources of chemical energy. It's believed this would have come in the form of oxidation-reduction processes driven by factors like hydrothermal activity, impacts, electrical discharges, or solar ultraviolet radiation. Organics may have been synthesized from inorganic molecules near submarine...

read more

More Eyes for the Asteroid Hunt

Centauri Dreams has always advocated a robust asteroid detection program to help us get an accurate census of objects that might endanger Earth. Thus I'm happy to report on promising events at the UK's sole observatory dedicated to Earth-crossing asteroids. The Spaceguard Center in Wales has been offered a new telescope by the Institute of Astronomy (Cambridge), the light pollution in the latter location having reached the point where observations are seriously compromised. Fortunately, there are parts of Wales with dark skies indeed. Thus the Schmidt instrument, useful for identifying objects moving against the stellar background, should be useful not only for searching but also tracking comets and asteroids. Absent funding sources in Wales or the UK government itself, the observatory turns to private sponsorship as the potential solution. We'll keep an eye on how that effort goes -- an estimated £54,000 ought to do the trick, and as this BBC report notes, the site's possibilities...

read more

37th Carnival of Space

The 37th Carnival of Space is up at Darnell Clayton's Colony Worlds site. This week I would recommend planetary probe enthusiasts have a look at Music of the Spheres, where the talk is not just about the MESSENGER probe's visit to Mercury, but about software you can run to simulate various situations in orbital mechanics. Also check Pamela Gay's look at the Galaxy Zoo project, in which she not only offers tips for using Sloan Digital Sky Survey data but also links to an audio interview with Galaxy Zookeepers Jordan Raddick and Chris Lintott. At advanced nanotechnology, Brian Wang examines Boeing's ideas for a space gas station, but I also want to turn your attention to his interesting post on the activation of a prototype extending Robert Bussard's fusion ideas to version WB-7.

read more

Starlight on a Distant Sea

Planets around other stars are too faint to be imaged directly, and although claims have been made for such detections (2M1207b is a case in point), it's safe to say that our current techniques need significant upgrading to achieve reliable images of such distant worlds. But studying terrestrial planets is a long-term objective and numerous studies have gone into concepts like Terrestrial Planet Finder and Darwin. One day and with some instrument we will indeed be looking at an exoplanet as small as the Earth, working with estimates of surface temperatures and checking its atmosphere for biomarkers that flag the presence of life. So let's suppose that in fifteen years or so we're looking at actual reflected light from a terrestrial world. What else can we learn about the place? The brightness of a planet like this can be affected by many things, including the presence of deserts on the surface or bright clouds above it. An active weather pattern would indicate the presence of a...

read more

SETI Report Bogus

Just off the phone with Seth Shostak, I can report that the KTVU story discussed below about a possible SETI reception is bogus. Apparently the reporter involved misinterpreted the conversation, as we had surmised. We may get a successful reception of an extraterrestrial civilization's signal one of these days, but this wasn't it.

read more

Life’s Ingredients in a Distant Galaxy

We spend so much time talking about the Arecibo radio telescope with regard to planetary radar that it's nice to come back to its applications in deep space. Thus the news that astronomers using the instrument have found key ingredients of amino acids in a galaxy 250 million light years from Earth in the constellation Serpens. The molecules are methanimine and hydrogen cyanide which, with the addition of water, form the amino acid glycine, considered a key ingredient in life on Earth. Arp 220 is known for a high rate of new star formation, and recent Hubble work has discovered more than 200 star clusters at its heart. Observing it at a range of frequencies and using the wide-band mode of the main spectrometer, the team, led by Arecibo astronomer Christopher Salter, found the characteristic emission of the molecules clearly evident. Says Emmanuel Momjian (NRAO), "The fact that we can observe these substances at such a vast distance means that there are huge amounts of them in Arp 220....

read more

Dubious SETI Report Claims Reception

This looks like a case of extremely poor science reporting, but because I've already received e-mail about it, I will point you to a report from KTVU, a San Francisco television station, claiming that a mystery signal has been received at Arecibo, with obvious SETI implications. Cosmic Variance has also picked up on this and seems as skeptical as I am. A quick call to the SETI Institute revealed there is absolutely no buzz about any sort of successful reception making the rounds there. I have a voicemail in to Seth Shostak in hopes of a comment.

read more

Exoplanet Prediction Confirmed

I'm late getting to this one, because I wanted to get Mike Gruntman's paper on interstellar instrumentation finished. But for exoplanet enthusiasts like myself, the best news to come out of the recent American Astronomical Society meeting may have been the announcement of a new planet around the star HD 74156. So let's talk about it, an interesting find because we haven't had a new planet turn up just where predicted since Urbain Le Verrier and John C. Adams (independently) worked out the existence of Neptune by noting its effects on the motion of Uranus. Thus were calculations turned into observations and thence discovery. Rory Barnes (University of Arizona) has been working on a theory that led to the HD 74156 discovery for some time. His computer simulations (begun with Thomas Quinn while both were at the University of Washington) on the stability of extrasolar planetary systems showed a key fact: All systems whose planets were close enough to affect each other gravitationally...

read more

Interstellar Instrumentation and Its Uses

It's a long-term conundrum in interstellar studies: When do you launch a mission, knowing that faster methods may make your spacecraft obsolete? We might think about this problem again in light of Mike Gruntman's paper on a precursor interstellar mission to the local interstellar medium (LISM). As we saw on Friday, Gruntman (USC) has examined a probe to 400 AU, a region well outside the heliosphere where interstellar space is thought to be unperturbed by the Sun's influence. Keeping to technologies that are close to the required readiness level (he considers solar sails and nuclear electric propulsion), Gruntman works out a nominal escape velocity of 75 kilometers per second. To those who argue that a twenty-year mission to the 400 AU target is sure to be superseded by faster spacecraft, the counter-argument is clear: If we wait for a breakthrough, how do we know its timing? What if, Apollo-style, political decisions slow the development of sound alternatives? Incremental missions...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives