Getting NanoSail-D Into Space

We need to find a way to get NanoSail-D into space. You'll recall that the original NanoSail-D perished in the explosion of a SpaceX Falcon rocket. But the opportunistic mission, a sail whose central components are three inexpensive Cubesats, two of which house a small, deployable sail, may yet get into the black. As we noted in this story from August of last year, a duplicate NanoSail-D is available. The trick is to find the funding and the booster. A joint project featuring The Planetary Society, NASA and the Russian Space Research Institute is attempting to do just that, looking at a solar sail experiment that may or may not involve NanoSail-D. The question is whether the 7 by 7-meter sail is the payload the mission planners will choose, the other option being a Russian-designed sail experiment of equally small size. You can read more about the design choices at The Planetary Society site. Image: The Huntsville-based NanoSail-D team stands with the fully deployed sail at ManTech...

read more

A Serendipitous Encounter with Warp Drive

How can the space between the stars be so full of stuff? So commented a friend who chanced upon this site, reading our discussion of interstellar gas and dust and the troubling fact that moving through it at high speeds bathes a spacecraft in radiation. Not an issue for our current generation of spacecraft, dust and gas rise in significance as we reach velocities that are an appreciable fraction of the speed of light, creating the need for various kinds of shielding. So what exactly is that stuff in outer space? Break down the interstellar medium and you get almost 90 percent hydrogen, with ten percent or so helium and trace elements like carbon, oxygen, silicon and iron accreted in dust particles. Oleg Semyonov, in his recent Acta Astronautica paper, examines all this, noting that the concentration of interstellar gas varies greatly between 104 cm-3 in galactic clouds to less than 1 cm-3 in the regions between the clouds. Our own Solar System lies in a cavity of low-density gas,...

read more

Shielding the Starship

"Interstellar travel may still be in its infancy," write Gregory Matloff and Eugene Mallove in The Starflight Handbook (Wiley, 1989), "but adulthood is fast approaching, and our descendants will someday see childhood's end." The echo of Arthur C. Clarke is surely deliberate, a sign that one or both authors are familiar with Clarke's 1953 novel about the end of human 'childhood' as we learn about the true destiny of our species in the universe. But becoming a mature species isn't easy, nor is figuring out interstellar flight. Awash in Hard Radiation Consider just one layer of complexity. Suppose we somehow discover a propulsion system that gets us to relativistic speeds in the range of 0.3 c. That seems a minimum for regular manned starflight given the times and distances involved, but suddenly attaining it doesn't end our problems. Interstellar space isn't empty, and when we accelerate to cruising speed at a substantial percentage of the speed of light, our encounter with...

read more

Direct Imaging of Nearby Planets

Depressing economic times inevitably cast a pall over our space plans. That makes it important to keep our eyes on the big picture -- what we hope to accomplish -- rather than succumbing to the fatigue induced by seeing good science pushed back on the calendar year after year. Will we get a terrestrial planet finder off in the next fifteen years? Will we get back to the Jupiter system some time before 2030? I don't know, but times like these require persistence, patience, and continued hard thinking. I was musing about this while looking through a paper Dave Moore passed along recently. It's a discussion of where we need to go now that we've got missions like CoRoT and Kepler in space and the James Webb Space Telescope in the picture for 2014. Tom Greene (NASA Ames) and colleagues from various institutions are looking at a space telescope with relatively modest aperture in the 1.4-meter range, one that would use a coronagraph to block the light of central stars to allow direct...

read more

Sundiver: Hybrid Propulsion Emerges

New propulsion technologies are under study in the laboratory, even if finding the funding for such work is always a problem. James and Gregory Benford have demonstrated that a powerful microwave beam can push an ultra-light carbon sail even to the point of liftoff under lab conditions at 1 gravity. That's useful information, for if we can leave the propellant at home, we can contemplate deep space missions driven by beamed microwaves, a technology that not only can pack a wallop, but is also less destructive to sail materials than a laser, meaning the sail can be brought to high temperatures more efficiently. Unusual Acceleration Yesterday we talked about a possible 'Sundiver' mission built around the microwave beaming idea. The Benfords' version of this mission depends upon a second effect they observed in the lab. The photon pressure applied to the small sail they used could not account for the observed acceleration. Something was clearly coming out of the carbon lattice, but what...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives