Direct Imaging of Nearby Planets

Depressing economic times inevitably cast a pall over our space plans. That makes it important to keep our eyes on the big picture -- what we hope to accomplish -- rather than succumbing to the fatigue induced by seeing good science pushed back on the calendar year after year. Will we get a terrestrial planet finder off in the next fifteen years? Will we get back to the Jupiter system some time before 2030? I don't know, but times like these require persistence, patience, and continued hard thinking. I was musing about this while looking through a paper Dave Moore passed along recently. It's a discussion of where we need to go now that we've got missions like CoRoT and Kepler in space and the James Webb Space Telescope in the picture for 2014. Tom Greene (NASA Ames) and colleagues from various institutions are looking at a space telescope with relatively modest aperture in the 1.4-meter range, one that would use a coronagraph to block the light of central stars to allow direct...

read more

Sundiver: Hybrid Propulsion Emerges

New propulsion technologies are under study in the laboratory, even if finding the funding for such work is always a problem. James and Gregory Benford have demonstrated that a powerful microwave beam can push an ultra-light carbon sail even to the point of liftoff under lab conditions at 1 gravity. That's useful information, for if we can leave the propellant at home, we can contemplate deep space missions driven by beamed microwaves, a technology that not only can pack a wallop, but is also less destructive to sail materials than a laser, meaning the sail can be brought to high temperatures more efficiently. Unusual Acceleration Yesterday we talked about a possible 'Sundiver' mission built around the microwave beaming idea. The Benfords' version of this mission depends upon a second effect they observed in the lab. The photon pressure applied to the small sail they used could not account for the observed acceleration. Something was clearly coming out of the carbon lattice, but what...

read more

Microwave Beaming: Groundwork for Sundiver

A 'Sundiver' mission may offer the best acceleration we can muster given the current state of our technology. New Horizons is currently moving toward Pluto/Charon at roughly 19 kilometers per second, but back of the envelope calculations can pull out 500 kilometers per second for a solar sail that makes the optimum close approach to our star and then unfurls to full diameter, riding the photon storm outward to the edge of the Solar System and beyond in record time. But Sundivers are tricky missions even on paper (we have yet to attempt one). Gregory Benford (UC-Irvine), who coined the 'Sundiver' term, and brother James (Microwave Sciences) have studied the matter in depth, and bring a unique perspective. They've not only theorized about sails and acceleration, but have actually tested the concept in the laboratory. Specifically, they've used an intense beam of microwaves to lift a carbon sail vertically in a vacuum chamber, and have studied how to spin and control it. A Sail Takes...

read more

Unusual Genesis of a Supernova

More on Saturday's supernova story, which was truncated both because I was wrestling with a flu bug but also because I needed to verify that the supernova under study at the Weizmann Institute of Science (Israel) was the event -- SN 2005gl -- examined in Nature this past week. A quick response from the Institute's Avishay Gal-Yam confirmed the identity, which means we have more to say about this unusual observation. Located some 215 million light years from us, SN 2005gl is striking on several counts, not least of which is that the blast of a supernova generally covers up all evidence of what the star once was. What Gal-Yam and co-author Douglas Leonard (San Diego State) discovered is that the Hubble Space Telescope had an image of the galaxy containing the progenitor star as it appeared eight years before it exploded. Moreover, the star stood out, being one of the brightest and most massive in the host galaxy. Image: Eight years later: A 2005 Keck Adaptive Optics Image of the event,...

read more

Explosion of a Gigantic Star

A star on the verge of exploding is an exceedingly useful thing. Identify it through a telescope and you can examine its telltale behavior before and after the event, in the process learning whether our existing theories about neutron star and black hole formation are supported by observation. We've seen stars on the order of twenty solar masses go into supernova mode, their internal elements becoming heavier and heavier through the progress of nuclear fusion. Iron is the result, but at stellar center the iron breaks down into protons and neutrons, causing an internal collapse and a supernova flash that causes the star's outer layers to be blasted into space. The core, meanwhile, mutates into a neutron star, its radius reduced to a matter of ten or so kilometers. All of this occurs more or less as theory describes, but until recently, we hadn't had the chance to study a larger 50 solar mass star in its supernova agonies. A black hole should result. Avishay Gal-Yam (Weizmann Institute...

read more

Saturn’s G Ring Gets a Moonlet

by Larry Klaes Our fascination with ringed worlds continues to grow as we learn more about what circles the worlds of the outer system. If you're looking for what may be the most spectacular ring system imagined -- two ringed exoplanets locked in a tight gravitational embrace -- be sure to read Jack McDevitt's novel Chindi (Ace, 2003), and spend some time with his crew on the surface of the moon that orbits their center of mass. Meanwhile, join Tau Zero journalist Larry Klaes as he focuses on continuing revelations from Cassini about Saturn's rings and the moons that feed them. And join us in our celebration of the extended Cassini mission. Who knows what discoveries await? In the 1968 novel version of 2001: A Space Odyssey, author Arthur C. Clarke said that the magnificent rings of the gas giant planet Saturn were made by visiting advanced extraterrestrial intelligences who tore up some moons in the Saturn system in the process of making their incredible Star Gate. This artificial...

read more

Surprise Find: Fragments of Fallen Asteroid

Asteroid 2008 TC3 is surely a sign of progress. The eighty ton asteroid, which made a spectacle of itself upon entry into Earth's atmosphere on the morning of October 7, 2008, was the first space rock to have been observed before it collided with our planet. What we're hoping, of course, is that any future objects headed our way will be spotted early enough that, if their size warrants, they can be diverted or destroyed. It was thought that 2008 TC3 did a good job of destroying itself when it exploded some 37 kilometers above the Nubian desert, but two researchers recently traveled to the Sudan and, with help from students at the University of Khartoum, collected 280 pieces of asteroid over a 29-kilometer field. Peter Jenniskens (SETI Institute) calls the event "...an extraordinary opportunity, for the first time, to bring into the lab actual pieces of an asteroid we had seen in space." Jenniskens is lead author on the paper that now appears as the cover on the latest Nature. I...

read more

Gravitational Waves: The Pulsar Connection

I, for one, would like to be in on the detection of gravitational waves. They flow naturally from the theory of General Relativity and ought to be out there, but none have ever been directly detected. What might make finding them easier would be a spectacular event, such as the merger of a pulsar and a neutron star or a black hole, an event that should cause a huge emission of gamma rays in its final moments. Short-period binaries are the ticket -- find them and you have the chance to test General Relativity to high degrees of precision. Some 200,000 volunteers have already signed up for the EINSTEIN@Home project, which searches for gravitational waves from rapidly spinning neutron stars. The project is now looking for volunteers for its new search, one that will use home computers to analyze data gathered at the Arecibo Observatory in Puerto Rico in the hunt for binary radio pulsars. This is jazzy stuff, another opportunity, like SETI@Home and the Galaxy Zoo, for those of us with an...

read more

How Much Is a Planet Worth?

The current Carnival of Space is up at OrbitalHub, with a lively take on habitable planets from Charles Magee's Lounge of the Lab Lemming. Magee, now a field geologist in central Australia, once operated a laboratory that analyzed crystalline and glassy solids -- 'everything from dead people to bits of the Moon,' as Charles puts it -- but he brings his analytical skills to bear this week on a much more theoretical problem: How much is a planet worth? Greg Laughlin (UC-Santa Cruz) has been kicking the question around on his systemic site, creating a prize for the first planet to reach a million dollars in value on his scale, with Earth setting the baseline at four quadrillion. Mars weighs in at a mere $13,988 on this scale, yet no known exoplanet even comes near that disappointing valuation. Magee has fun with Greg's equations and goes to work on Venus, focusing on its albedo. Assuming a terrestrial albedo (0.36), he quickly arrives at a Venusian temperature not dissimilar from the...

read more

Life’s Left-Handed Secret

Twenty different amino acids go into making up the vast variety of proteins so essential to life. But why does life on Earth use only left-handed versions of amino acids to build them? After all, amino acids can be made in mirror images of each other. Jason Dworkin (NASA GSFC) notes the key issue. Mix left- and right-handed amino acids and "...life turns to something resembling scrambled eggs -- it's a mess. Since life doesn't work with a mixture of left-handed and right-handed amino acids, the mystery is: how did life decide -- what made life choose left-handed amino acids over right-handed ones?" Image: This artist's concept uses hands to illustrate the left and right-handed versions of the amino acid isovaline. Credit: NASA/Mary Pat Hrybyk-Keith. It's a question with ramifications for life elsewhere in the universe. Suppose the day comes when we finally get a robotic lander to Enceladus. The news flashes around the world: Life discovered on one of Saturn's moons! But is it truly...

read more

Studying Habitable Planets with JWST

Spotting transiting planets is what missions like CoRoT and Kepler are all about. The next step, getting a read on what's in the atmosphere of any transiting, terrestrial world, is going to be tricky. The biomarkers like ozone and methane, so crucial for determining whether there's life on a distant planet, are beyond the range of existing spacecraft. But the the next generation James Webb Space Telescope is also in the works, scheduled for launch in 2013. For nearby Earth-class worlds, JWST may be up to the task, at least for terrestrial planets that transit. In fact, if Alpha Centauri A turns out to have a transiting Earth-like planet (a major if!), it would take only a few transits to study the light filtering through its atmosphere to look for signs of life. Alpha Centauri is problematic in any case, but a recent study shows that the method -- breaking down the star's light during a transit to look for the characteristic markers -- could be extended to other stars, provided...

read more

Icarus: Revisiting the Daedalus Starship

by Kelvin Long Project Daedalus was the first thoroughly detailed study of an interstellar vehicle, producing a report that has become legendary among interstellar researchers. But Daedalus wasn't intended to be an end in itself. Tau Zero practitioner Kelvin Long here offers news of Project Icarus, a follow-up that will re-examine Daedalus in light of current technologies. A scientist in the plasma physics industry and an aerospace engineer, Long is assembling the team that will begin this work in 2010, following a 'Daedalus After 30 Years' symposium scheduled for September at the headquarters of the British Interplanetary Society. Can we improve Daedalus' propulsion systems, change its targets, modify its shielding? Numerous theoretical studies await. During the period 1973-1978 members of the British Interplanetary Society undertook a theoretical study of a flyby mission to Barnard's star, some 5.9 light years away. This was Project Daedalus, which remains the most detailed study...

read more

Saturnian Transits (and a Memory)

Every now and then a new space photo completely snares the attention. This one is a Hubble shot showing four of Saturn's moons moving in front of the planet. Note Titan at the top, while below it from left to right are Enceladus, Dione and (at extreme right) Mimas. To see the smaller moons, you'll want to click the image, which will take you to a zoomable view that captures these tiny satellites against the immensity behind them. Image: Saturn and four of its moons, as seen by Hubble's Wide Field Planetary Camera 2 on February 24, 2009, when Saturn was at a distance of roughly 1.25 billion kilometers from Earth. Hubble can see details as small as 300 km across on Saturn. The dark band running across the face of the planet slightly above the rings is the shadow of the rings cast on the planet. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA). The transit of the four moons is an unusual event because the rings only become tilted edge-on to Earth every fourteen to fifteen...

read more

Prospects for Red Dwarf ‘Earths’

Most stars in our region of the galaxy are low-mass M-dwarfs, making the investigation of their planetary systems quite interesting. If we learn that stars like these, which comprise over 70 percent of the galactic population, can be orbited by Earth-like planets, then the galaxy may be awash with such worlds. But some models have indicated that Earth-sized planets would be rare around these stars, working on the assumption that scaled-down versions of the Sun's protoplanetary disk would tend to produce only low-mass planets. Clearly, we need to know more about the masses of such inner disks, since available mass seems to be a key to the formation of habitable planets. Extrapolate the early nebula from our own Solar System to lower protoplanetary disk masses around M-dwarfs and the terrestrial worlds that form are no larger than Mars -- they're small, dry, worlds unlikely to develop life. Low-mass disks would seem to lead to low-mass planets. But what if those M-dwarf protoplanetary...

read more

Interstellar Matters at UK Conference

Tau Zero practitioner Kelvin Long has organized an interstellar session at the forthcoming 2009 UK Space Conference, which will take place from April 1 to 4 at Charterhouse School, near Godalming Surrey. The overall conference looks to be an excellent one, with symposia on rocket technology, panels and presentations on astronomy and space science, much educational material for teachers and students, and the presentation of the Arthur Clarke Awards on the evening of the 4th. From our perspective, of course, it's good to see the Tau Zero logo up on the site's interstellar page, with links to all presentations. Long is a scientist in the plasma physics industry who will address inertial confinement fusion and antimatter-catalyzed fusion for space propulsion. You'll recall that inertial confinement was the propulsion system of choice for the Project Daedalus starship design created by members of the British Interplanetary Society. Antimatter-catalyzed fusion interests me in light of...

read more

A New Tilt on SETI

The planets in our Solar System rotate around the Sun more or less in a plane (the ecliptic) that is tilted some sixty degrees with relation to the galactic disk. It's interesting to speculate that this could have ramifications in terms of the SETI hunt. Shmuel Nussinov (Tel Aviv University) considers the possibility that any extraterrestrial civilizations might try to contact us only after they had a fair idea we were here. And just as we are now trying, via Kepler and CoRoT, to track down small planets using the transit method, so too might extraterrestrials try to observe our transits, and having done so, to transmit a message. Targeting habitable planets should optimize chances for a successful reception. From our end, a prudent SETI strategy might then be to home in on the 'stripes' of the sky within which our system's planetary transits are detectable from other solar systems. As Nussinov writes: The thickness of the galactic disc in our neighborhood is ? 150 parsecs. With the...

read more

Mapping a Galactic Transit System

I love the London Underground and have a great fondness for wandering about the city with a tube map stuck in my pocket. My wife and I last did this a few years back, making an early March trip in which we rented a Bloomsbury apartment for ten days and hopped all over the area, station to station, emerging for blustery walks to various historical sites (we were both, at one time, medievalists), then ducking into nearby restaurants for tea and warming up, talking about what we had seen and examining the map for our next stop. A map of the London Underground is a schematic diagram that has a beauty of its own, reducing a city beyond its topography to a sequence of formalized connections and zones. The fascination is in the abstraction of the familiar, rendering distance and space intelligible. Now look at what we might call a 'tube map' of the Milky Way, as produced by Samuel Arbesman, a postdoc at Harvard with an interest in computational sociology and, obviously, big maps. Click on...

read more

How Many Stars in the Galaxy?

We've often speculated here about how many stars exist in the Milky Way. Earlier estimates have ranged from one hundred billion up to four hundred billion, with a few wildcard guesses in the range of one trillion. The number is still, of course, inexact, but recent work has led to a serious misunderstanding of the subject. As reported in this earlier post, Harvard's Mark Reid and colleagues have discovered that the Milky Way is likely to be as massive as the Andromeda galaxy, which means that it could have the mass of three trillion stars like our own Sun. Does that mean that the Milky Way contains three trillion stars? Absolutely not. I'm seeing the three trillion star number popping up all over the Internet, and almost reported it that way here when I first encountered the work. The misunderstanding comes from making mistaken assumptions about galactic mass. Reid used the Very Long Baseline Array to examine regions of intense star formation across the galaxy, a study the scientist...

read more

Rare Earth? Not Enough Data to Know

George Dvorsky takes on the 'rare earth' hypothesis in his Sentient Developments blog, calling it a 'delusion' and noting all the reasons why life in the galaxy is unlikely to be unusual. The post reminds me why the book that spawned all this was so significant. Rare Earth: Why Complex Life is Uncommon in the Universe (Copernicus, 2000) is Peter Ward and Donald Brownlee's take on our place in the cosmos, concluding that complex life is rare because an incredibly fortuitous chain of circumstances must arise for it to occur. Indeed, the authors argue that large parts of our galaxy are composed of what they call 'dead zones.' The argument is complex and looks at factors ranging from a planet's place in the galactic habitable zone (itself a controversial subject), its orbit around its own star, its size, its satellites, its magnetosphere, its plate tectonics, and more. I'm surprised to realize, looking through our archives here, that I haven't managed to do a complete review of Rare...

read more

Browsing the Exoplanet Catalog

We now have on the order of 335 confirmed exoplanets, with an ongoing race between the CoRoT and Kepler teams to find the first Earth analog in the habitable zone around another star. CoRoT's shorter observation cycles make finding a terrestrial world around a G-class star problematic -- the orbit would necessarily be on the order of a year, and the transit would then have to be confirmed with additional transits and whatever radial velocity observations could be mustered. But CoRoT just might find an Earth-class planet in the habitable zone of a K-class star, so we shouldn't assume Kepler is necessarily going to win the 'habitable Earth' race. I mentioned a few days back that the Planetary Society has unveiled its new Catalog of Exoplanets, a fine resource with the basics on detection methods and a glossary that complements a catalog filled with helpful orbital animations. If you want to get a quick read on a given exoplanet, take a look here. Some of these planets have gone beyond...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives