Space Art: Reviving the Imagination

The other day I made a crack about a particular piece of artwork not being up to snuff, said item being an illustration accompanying a news release about a recent astronomical find. Maybe I was just out of sorts that day. In any case, what's significant to me about much of the artwork floating around to illustrate news stories is that it's generally quite good. Sure, we're talking about 'artist's concepts' of things like exoplanets and other distant objects, but they're usually concepts informed by current data and they're well executed. Then I ran across Jeff Foust's essay on art and space in the Space Review and got to thinking about what had propelled me as a kid into this kind of work. We had a fabulous network of community libraries in St. Louis back in the 1950s and '60s, and I made good use of three of them in particular. I'd stock up on science books and more or less read the astronomy sections straight through, starting at one end and working across. The photographs of...

read more

Obousy’s ‘Interstellar Journey’ Site Debuts

Point a Voyager-speed spacecraft at Alpha Centauri and the travel time would be on the order of 73,000 years. Those of us obsessed with the idea of interstellar journeys are forced to hope for profound breakthroughs in physics and engineering. The word 'breakthrough' is, if anything, an understatement. An Alcubierre-style 'warp drive' would, so far as we know, require energies that would tax even a Kardashev Type III civilization, as physicist Richard Obousy points out. Hence the acknowledged 'giggle factor' that plagues serious discussion of these matters. Writes Obousy: The giggle-factor is a consequence of using a name for a cutting edge propulsion concept that is taken straight from science fiction. In reality the name is a double-edged sword. When one mentions a 'warp drive' it should be immediately obvious (one would hope) that what is being dicussed is a hypothetical propulsion mechanism that utilizes an asymmetric manipulation of the fabric of spacetime to generate an exotic...

read more

A White Dwarf with Supernova Possibilities

I try to run interesting astronomical art wherever I can find it, but the image that accompanies this ESA news release on the discovery of an interesting white dwarf just doesn't cut it. So use your imagination as I describe the results of a study using data from ESA's XMM-Newton X-ray telescope, which have given us something we've long lacked -- highly accurate mass information for an accreting white dwarf in a binary system, one that is growing close to the point of becoming a supernova. Something in the vicinity of HD 49798 has been known to be giving off X-rays since 1997, but it has taken XMM-Newton to nail the culprit. The white dwarf near the larger star is twice as massive as expected, cramming about 1.3 solar masses into an object with a diameter about half that of our planet. Rotating every thirteen seconds, this object boasts the fastest white dwarf rotation known. Why the larger mass? We're looking at a white dwarf that is pulling gaseous material out of its companion...

read more

Habitable Planets Conference Update

The exoplanet hunt has entered a significant new phase, one focused on transiting planets and the useful things we can learn about their physical properties and atmospheres through such events. Driven by CoRoT and Kepler, we're now in position to use those transits to spot smaller worlds than ever, down to terrestrial size, and naturally the focus is on Earth analogs located in the habitable zones of their stars. So think of it this way: We've gone from a broad-brush approach based largely on radial velocity methods to a more selective hunt, one that will take us to the realm of planets that can have liquid water on their surfaces and aren't so different from our own. Not that the continuing work on characterizing planetary systems is of any less importance, but we've found plenty of gas giants, and now we're trying to learn something about how common these smaller worlds may be. Putting an exclamation point on this focus is a conference called Pathways Towards Habitable Planets, to...

read more

An Advanced Propulsion Overview

Both Tau Zero Foundation founder Marc Millis and JPL's recently retired Robert Frisbee appear in an article in the Smithsonian's Air & Space, where voyages to distant places indeed are discussed. Nothing is further from Earth, the article notes, than Voyager 1, which travels at a speed (almost 17 kilometers per second) that would get it across the US in a little under four minutes. Point that spacecraft toward Proxima Centauri and the journey at this speed would take 73,000 years. Clearly, something has to give, and writer Michael Klesius runs through the options. From Ideas to Engineering Voyager is actually headed in the vague direction of the constallation Camelopardalis, and won't come near anything stellar in several hundred thousand years. We'd like to get mission times to a nearby star down to decades so that scientists and engineers working on the project could live to see its outcome. How to achieve that is a question that has been at the back of Bob Frisbee's mind for a...

read more

Unusual Find 12.8 Billion Light Years Out

Here's a surprise -- a galaxy as large as the Milky Way that houses a supermassive black hole with the equivalent of a billion suns worth of matter. The surprise isn't the object itself but its distance, some 12.8 billion light years (redshift 6.43). [See Adam Crowl's comment below: This is not actually a 'distance' but the light travel time]. That makes this a young object, assuming a universe that began roughly 13.7 billion years ago, and has implications for how such galaxies form. Tomotsugu Goto (University of Hawaii), who led the team making the discovery, notes the unusual nature of his find: "It is surprising that such a giant galaxy existed when the Universe was only one-sixteenth of its present age, and that it hosted a black hole one billion times more massive than the Sun. The galaxy and black hole must have formed very rapidly in the early universe." It seems odd to say it, but what complicates studying such distant objects is that host galaxies are often lost in the...

read more

The Pursuit of Serendipity

Whenever I hear the word 'serendipity,' I think of my old mentor Norman Eliason, professor of medieval studies at UNC-Chapel Hill. During my years of grad work, Dr. Eliason passed along habits of precision and an eye for detail that I've tried, not always successfully, to emulate. One day when he asked about my work habits, I told him that I preferred to work outside the library, checking out books I needed or making copies of relevant journal articles. I can still see him nodding slowly in his office chair, cigarette protruding from his hand, and I knew I'd said the wrong thing. "You need to be among the books," he said. "Use your free time to look around and you'll run into things in the stacks you never knew were there." I took his advice and he was right. Serendipity --chance discovery, usually when looking for something else -- worked. At least, it always has for me, but you have to put yourself in a place where discoveries are likely to be made. Image: Serendipitous discoveries...

read more

Galactic Dark Matter Modeled

I don't spend too much time worrying about the ultimate fate of the Earth as it interacts with a swollen red Sun some five billion years from now. My thought is that if any civilization is still on the planet in a billion years, it will have long since worked out how to exit when necessary (and it will be necessary a lot sooner than five billion years!), or maybe how to tweak planetary orbits to preserve our planet, if only as a choice historical site. Still less do I worry about the Milky Way being destroyed by a collision with one or more satellite galaxies, like the Large and Small Magellanic Clouds that move around the parent galaxy. So when I read that an Ohio State team led by Stelios Kazantzidis had shown via computer simulations that such a collision would leave the galaxy more or less intact, my real interest was in the implications of this work in terms of one of science's great mysteries -- the nature of dark matter. Have a look at the team's modeling of the dark matter...

read more

Planet Formation and Interstellar Winds

Any unexpected kink in the debris disk surrounding a young star is often attributed to a planet forming amongst the gas and dust. But that may not be the only explanation. In fact, new work by John Debes and team at NASA GSFC points to an alternative: The motion of the infant system through insterstellar gas. Thus we have yet another reminder that space is not truly empty, and that patches of gas can play their role in planet formation. Debes and colleagues have been looking at infant systems like that around the star HD 32297, some 340 light years from Earth in the constellation Orion. About 100 million years old, the star is surrounded by a dust disk that resembles what our Solar System probably looked like not long after the major planets formed. Noticing that the dust disk around the star was warped, the team was led to link the finding to the presence of nearby interstellar gas clouds. The idea of interstellar gas drag upon a stellar system moving through such a cloud seems a...

read more

Science Fiction and Interstellar Thinking

It's easy to cite science fiction technologies that made their way into real life, starting with, say, submarines and the Jules Verne connection, and pushing on into air travel and, eventually, a spaceship to the Moon. It's also easy to find numerous examples of science fiction being blindsided by technologies no one really predicted. I've read "A Logic Named Joe," but other than Murray Leinster's prescient 1946 tale, did anyone really predict the advent of computers small enough to fit on your desktop, or mobile devices that connect us to a worldwide network for communications and data transfer? Predictions or Dry Runs? This is where I think some science fiction enthusiasts make a mistake in trying to sell their genre as a predictive force. Sure, the examples are there, and we have visionaries like Arthur Clarke who, in addition to crafting spectacular novels of the future, managed to introduce communications satellites into the pages of a popular magazine (Wireless World) before...

read more

Rethinking Planets and Stellar Metals

We often speak about planets migrating from the outer to the inner system of a star, something that helps us put 'hot Jupiters' in context. But what about migration within the galactic disk? It's an idea under continuing investigation. In the absence of direct observational evidence, we infer migration and assume that older stars often come from regions with significantly different metallicity than stars in their current environment. The presumed origin would be the inner disk, which Misha Haywood defines as that part of the galaxy inside the radius from galactic center to our Sun. Dave Moore sent me Haywood's latest paper a few months back and I've been slow in getting to it because I wanted to give its conclusions further thought. It's intriguing stuff. Haywood (Observatoire de Paris) takes note of the fact that we tend to find gas giants around stars that are rich in metals (here a pause to remind newcomers that by 'metals,' we mean elements higher than helium). And he wants to...

read more

?Earth: Crash Course in Building a World

?by Larry Klaes Tau Zero journalist Larry Klaes here gives us a quick overview of the history and future of the Earth, so vital for understanding not only how life emerged here but how it may appear around other stars. It's good to keep this background in mind as Kepler and COROT go planet-hunting. Thus far we've had our share of surprises as we've explored other systems, and doubtless there will be many more as future instruments come online, both in space and on the ground. And as Larry reminds us, there is much we still have to learn about our own planet. Let's look at our celestial home’s place in time as well as space, namely the long and ancient history of its cosmic birth and development. This story includes a general history of the wide variety of living beings that dwell just about everywhere on this planet. Planet Formation and the Big Collision Earth’s geological history began about five billion years ago, roughly eight billion years after the Universe got its start in the...

read more

Building Infrastructure: The Tether Option

Conservation of energy means we never really get something for nothing. Nonetheless, the idea of propellantless propulsion is profoundly important for our future in space. A solar sail uses momentum from solar photons to get its boost, letting the Sun serve as the energy source so we don't have to carry heavy fuel tanks and can maximize payload. So propellantless propulsion really means finding sources outside the spacecraft itself to do the work. The Interplanetary Gambit Recently I've finished Michel Van Pelt's book Space Tethers and Space Elevators (Copernicus/Praxis, 2009), a treatment of a technology we seldom consider in these pages because it's more practical in terms of near-Earth solutions. But Van Pelt surveys tethers -- and the space elevator idea, which is built around what could be considered a giant tether -- so comprehensively with regard to the implications of leaving the propellant behind that his book is a must read for those of us interested in deep space...

read more

The Closest Dwarf

A conference like the recent on in Aosta offers plenty of opportunity to listen in on fascinating conversations, one of which had to do with what would happen if we found a brown dwarf closer to the Earth than the Centauri stars. The general consensus was that such a find would be a powerful stimulus to the public imagination and would probably result in renewed interest in getting to and exploring such a place. A boon, in short, for all our interstellar efforts, an awakening to a new set of possibilities. But if there were a brown dwarf that close, wouldn't we have other signs of it? One figure I heard mentioned at Aosta was three light years. Here I have to do some checking, because I don't recall who dropped that figure or what paper he was referring to, but the upshot was that someone has argued that even a small brown dwarf closer to the Sun than three light years would leave an unmistakable signature in the orbits of our Solar System's planets. I'll see if I can track down the...

read more

Rethinking Stellar Populations

Back in April a paper appeared in the Astrophysical Journal that drew into question our view of star populations. We've assumed since the 1950s that we could count the stars in a particular area of sky by looking at the light from the brightest and most massive stars. In making this assumption, we were tapping the initial mass function, a way of describing the mass distribution of a group of stars in terms of their initial mass. We could, then, estimate the total number of stars based on a sample of the stars that were the easiest to see, assuming that a set number of smaller stars ought to have been created in the same region. Every star twenty or more times as massive as the Sun should be accompanied, in this thinking, by about 500 stars of solar mass or less. But Gerhardt R. Meurer (Johns Hopkins University) and team used data from the Galaxy Evolution Explorer to challenge these proportions. The numbers, it turns out, don't work out as consistently as we had thought. Says Meurer:...

read more

A Stellar Gift to Education in Uganda

Do you have any astronomy books you could spare? Larry Klaes has passed along word from Mimi Burbank, a friend from the History of Astonomy e-mail list who lives and works in Uganda. Living in Kasese, Mimi has been involved in educational activities for people living in a rural area with few resources. She's trying to gather books on astronomy from childrens' books up to adult levels. Mimi writes as follows: The people here are very poor and there are no resources for education, and so I have been asking my friends from all around the world to send books and other things. I have received almost a hundred books for children of all ages, and the little NGO that I work with (BUFO) has achieved extremely high scores on their leaving exams at the end of the school year. They have instituted a Saturday reading hour, during which the older children who can read, read stories out of the books to the younger children who can not yet read, and they all love it. This is the beginning of a...

read more

Gravitational Waves and their Limits

Sometimes what you don't detect tells a scientific story just as important as what you do. In the case of LIGO (Laser Interferometer Gravitational-Wave Observatory) and the VIRGO Collaboration, we're talking about setting limits to the amount of gravitational waves that would have been produced by the Big Bang. Those waves, predicted by Albert Einstein in 1916 and consistent with his theory of General Relativity, should be traceable and quite valuable to us, carrying as they do information about the earliest stages of the universe. Image: Modeling gravitational wave complexity. Laser interferometers should be able to detect the gravitational waves produced by the most violent astrophysical events, such as the merging of two black holes. Credit: MPI for Gravitational Physics/W.Benger-ZIB. The gravitational waves ought to be out there (General Relativity predicts that all accelerating objects should produce them) but they have yet to be observed directly. In fact, the so-called...

read more

Notes & Queries 8/19/09

On Returning to the Moon Interesting to see that the recent debate in the pages of The Economist on whether or not we should return to the Moon has reference to the outer Solar System. The debate pits Gregg Maryniak (James S. McDonnell Planetarium, St. Louis) against Mike Gold (Bigelow Aerospace). Normally the Moon is off our agenda in these pages because of our focus on the outer system and beyond, but my friend Frank Taylor noticed that among Maryniak's arguments for a return to the Moon was its utility as a staging point. Specifically, Maryniak argues that in addition to its other uses, the Moon lets us get our 'space legs' by learning about shielding human crews and 'living off the land' in a deeply inhospitable place. All of this may well lead to lunar power stations or the collection of Helium-3 for fusion projects, a developing technology with profound implications. Writes Maryniak: Once we have the ability to capture and transmit energy at the megawatt and gigawatt levels we...

read more

Amino Acid Detected in Comet Debris

Chalk up another win for the 'life is ubiquitous' school of thought. We now know that when the Stardust spacecraft passed through the gas and dust surrounding comet Wild 2 back in 2004, it captured samples that include glycine. Living things use glycine to make proteins, which made the preliminary detection of this amino acid a significant event, though one that had to be carefully analyzed. After all, terrestrial contamination could have accounted for the glycine gathered up by Stardust. Image: The comet Wild 2 as imaged by the Stardust spacecraft. Credit: NASA/JPL. Ensuing work, however, has ruled out the contamination scenario. The space-gathered samples show significantly more Carbon 13 than glycine from Earth, an isotopic marker that identifies the material as originating in the comet. That gets us back to a welcome thought, that life is common in the universe. Carl Pilcher (NASA Astrobiology Institute) has this to say: "The discovery of glycine in a comet supports the idea that...

read more

Hunting Asteroids (and Money)

A recent report from the National Academy of Sciences points out that NASA has been tasked to locate 90 percent of the most deadly objects that could conceivably strike our planet. Yet only about a third of this assignment has been completed, and the money has yet to be found to complete the job. The agency calculates it needs about $800 million between now and 2020 to make the needed inventory, while $300 million would allow it to find most objects larger than 300 meters across. The problem is that even the smaller sum is not available, and this AP story quotes space policy expert John Logsdon (George Washington University) as saying the money may never come through, calling the program "a bit of a lame duck." In other words, there is not yet enough pressure on Congress to produce the needed funds. Meanwhile, asteroid detection remains a low priority for other governments as well, making this a problem we're choosing to ignore in the absence of recent reminders of its potential....

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives