HR 8799b: Low Temperatures, Surprising Spectrum

Photos of the Earth from a significant distance are always fascinating, dating back to the spectacular shot of the rising Earth over lunar mountains taken by Apollo 8 in December of 1968. The image below, showing Earth and its Moon, comes from the Messenger spacecraft, taken at a distance of some 183 million kilometers. I see things like this and think about our future imaging of exoplanets, and the possibilities of space-based missions that can study their atmospheres. Learning how we look helps us understand what to look for around other stars, and also offers a bit of the 'wow' factor. We're nowhere near this kind of imaging with exoplanets but we're getting better all the time, and that's providing some curious results. HR 8799 is the interesting young system some 130 light years from Earth (in Pegasus) that has yielded direct images of three planets. Some eighteen months after the discovery of the system here, we've now managed to get a spectrum of HR 8799b, useful for what it...

read more

Poul Anderson’s Answer to Fermi

Enrico Fermi's paradox has occupied us more than occasionally in these pages, and for good reason. 'Where are they,' asked Fermi, acknowledging an obvious fact: Even if it takes one or two million years for a civilization to develop and use interstellar travel, that is but a blip in terms of the 13.7 billion year age of the universe. Von Neumann probes designed to study other stellar systems and reproduce, moving outward in an ever expanding wave of exploration, could easily have spread across the galaxy long before our ancestors thought of building the pyramids. Where are they indeed. Kelvin Long, one of Project Icarus' most energetic proponents, recently sent me Poul Anderson's thoughts on the subject. I probably don't need to tell this audience that Anderson was a science fiction author extraordinaire. His books and short stories occupied vast stretches of my youth, and I still maintain that if you want to get not so much the tech and science but the sheer wonder of the...

read more

SETI and the ‘Long Stare’

It's been a week with an exoplanet focus, what with the interesting Kepler results yesterday and the five, or perhaps seven, planets found around the same star by the HARPS instrument. But I can't close the week without recourse to Seth Shostak's recent comments on biological versus machine intelligence. Paul Davies took much the same tack in his recent book The Eerie Silence (Houghton Mifflin Harcourt, 2010), arguing that any civilization we encounter will likely be composed of intelligent machines. Shostak thinks SETI should take that seriously. Searching for Doppelgängers Right now we're searching for what Shostak calls 'doppelgängers of humans' -- i.e., SETI has focused on places that could support life forms that do more or less what we do, which includes not only using radio to communicate, but much broader traits like living for finite lifetimes, following basic biochemical dictates and being subject to evolution. That biases the search toward places that could sustain life as...

read more

New Kepler Planets in Resonance

Somewhere around 2000 light years away in the direction of the constellation Lyra is a Sun-like star orbited by at least two Saturn-class planets. What's interesting about this news, as just discussed in the Kepler press conference I've been listening to this afternoon, is that for the first time we've detected and confirmed more than one planet around a single star using the transit method. But much more important, transit timing variations -- the leads and lags of the two planets as they transit the star as seen from Kepler -- can be used to tease out new and significant information. Kepler-9b and 9c mark the first clear detection of transit timing variations by Kepler, allowing us to study the gravitational interactions between the planets involved. And that's useful stuff: We see two planets in a 2:1 orbital resonance, one with a 19.2-day orbit, the other with a 38.9-day orbit. As the inner planet completes two orbits, the outer planet completes one. The variations in transit...

read more

HD 10180: A Planetary Harvest

In a sense the planets discovered around the Sun-like star HD 10180 are no surprise. We’ve long assumed that planetary systems with numerous planets were common. We lacked the evidence, it’s true, but that could be put down to the limitations of the commonly used radial velocity method, which favors massive worlds close to their stars. But we’re getting much better at radial velocity work and, using instruments like the HARPS spectrograph at the European Southern Observatory’s La Silla (Chile) telescope, we’re teasing out ever more exquisite signals from distant systems. More and more multiple-planet scenarios are in our future. Noting that high-precision radial velocity surveys are now able to detect planets down to roughly 1.9 Earth masses, the paper on the HD 10180 work frames the situation this way: Preliminary results from the HARPS survey are hinting at a large population of Neptune-like objects and super-Earths within ?0.5 AU of solar-type stars (Lovis et al. 2009). Moreover,...

read more

Twin Suns May Spell Disaster

The image of double suns rising over the planet Tatooine from the first Star Wars movie never quite goes away. I remember watching the film in a theater about a week after its release, being dazzled by the visuals but thinking that a planet in an orbit around both stars of a binary would have to be well outside the habitable zone. I didn't believe in Tatooine, in other words, though now I'm a bit more circumspect. A couple of years ago Cheongho Han (Chungbuk National University, Korea) wrote a paper suggesting that microlensing might be of use in finding a planet fitting this description, if indeed such a planet exists. Then yesterday Massimo Marengo dropped me a note about new work he has been involved in that puts a damper on the idea of terrestrial worlds in such settings. Long-time Centauri Dreams readers will remember Marengo, whose fascinating work on Epsilon Eridani we've covered in these pages on several previous occasions. Now at Iowa State University, the astrophysicist has...

read more

Pulsar Timing: An Outer System Tool

The ways astronomers find to wrest new findings from raw data never ceases to amaze me. This news release from the Max-Planck-Institut für Radioastronomie focuses on a new way to weigh the planets in our Solar System by using signals from pulsars. The method flows out of work on pulsar timing that has been used in the hunt for gravitational waves and has implications not just for the known planets but for detecting hitherto unknown objects in our system. Pulsar timing supplements earlier ways of weighing planets by measuring their effect on spacecraft flown past them, or extrapolating information from the orbits of their moons. And it seems to be hugely sensitive, to just 0.003 percent of the mass of the Earth and one ten-millionth of Jupiter's mass. "This is first time anyone has weighed entire planetary systems - planets with their moons and rings," says team leader Dr. David Champion (MPIfR). "In addition, we can provide an independent check on previous results, which is great for...

read more

A Near-Term Read on Life in the Galaxy

Although he doesn't post nearly as often as some of us would like, Caleb Scharf's Life, Unbounded site is always worth reading. Scharf, author of the textbook Extrasolar Planets and Astrobiology (University Science Books, 2008) is the director of the Columbia University Astrobiology Center. As such, he's positioned to offer valuable insights into our investigations of the forms life might take on other worlds. Not long ago he wrote a fascinating post for Scientific American on a statistical approach to astrobiology, a timely idea as we discuss ongoing missions like Kepler and proposed space telescopes like WFIRST. Natural Selection on a Galactic Scale Scharf's latest is a quick take on panspermia, the idea that viable organisms may be exchanged between planets as various early impacts spread debris through a planetary system. We know that surface material moves continually between the rocky moons and planets of our own system, and we've also come to understand that microbial...

read more

Star Wars? Not at NASA

I had started today's entry -- on dark energy -- only to be sidetracked by a short piece in Space.com that almost had me spewing my morning coffee all over my keyboard. Here's a quote from the story, which focuses on a Star Wars convention in Florida held last weekend: "'Star Wars' filmmakers and fans asked NASA representatives to develop a hyperdrive that can transport astronauts through space at light speed. And to make it snappy." In response, the story quotes NASA's Joseph Tellado, a logistics manager for the International Space Station, who says this: "We need better propulsion systems. Right now I'd say that would be the one invention that would really help us out a lot. It'd be great if our astronauts could go at hyperspeed.... I believe 'Star Wars' and NASA have a lot in common. We're looking to the future. NASA is like the first stepping stone to ultimately get to that 'Star Wars' level." And the story adds this: The inspiration works both ways, with NASA and "Star Wars"...

read more

Decadal Survey Pushes WFIRST Telescope

What do you get if you combine the insights of nine expert panels, six study groups and a broad survey of the astronomy and astrophysics community? If you’re lucky and have the right committee, you wind up with useful analyses of the readiness and costs of science projects for the future, both major and minor. And as the National Research Council has done in its new report, you then create a decadal survey, in this case the sixth produced by the NRC, that identifies where the US should go next in answering ‘profound questions about the cosmos.’ A prepublication copy of New Worlds, New Horizons in Astronomy and Astrophysics is available online. To understand the needs of space science in the next ten years, though, be prepared for new acronyms. The most significant for Centauri Dreams readers will probably be WFIRST, the 1.5-meter Wide-Field Infrared Survey Telescope, which could launch as early as 2020 as part of our ongoing search for terrestrial exoplanets. In terms of the panel’s...

read more

IBEX: From System’s Edge to Nearby Space

When the Project Daedalus team went to work to design a starship back in the 1970s, they contemplated using the atmosphere of Jupiter as their source for helium-3, an isotope needed in vast quantity for Daedalus' fusion engines. More recently, though, attention has turned to the lunar surface as a possible source. Now the IBEX spacecraft, normally charged with studying the interactions between the heliosphere and what lies beyond, has been used to examine a useful recycling process as particles hit the Moon, pushed there by the Sun's 450 kilometer per second solar wind. A Glow of Energetic Neutral Atoms The process is straightforward -- lacking a magnetosphere, the Moon takes the full force of the solar wind, absorbing most of its particles into lunar dust. But the IBEX team, led by David McComas (Southwest Research Institute), has been able to show that about ten percent of the solar wind particles escape back to space in the form of energetic neutral atoms, or ENA's, detectable by...

read more

Thoughts on Brown Dwarfs, Disks and Planets

Planetary systems around dim brown dwarfs are a fascinating thing to contemplate, and for a vivid imagining of future human activities on such planets, I'll send you to Karl Schroeder's Permanence. The 2002 novel posits ingenious engineering to sustain bases on such worlds, and even comes up with an interstellar propulsion method powered up by their energies that sustains an expanding starfaring culture. A brief sample of Schroeder's universe (not enough to be a spoiler): ...the brown dwarfs each had their retinue of planets -- the halo worlds, as they came to be called. And though they were not lit to the human eye, many of these planets were bathed in hot infrared radiation. Many were stretched and heated by tidal effects, like Io, a moon of Jupiter and the hottest place in the Solar System. And while Jupiter's magnetic field was already strong enough to heat its moons through electrical induction, the magnetic field of a brown dwarf fifty times Jupiter's mass radiated unimaginable...

read more

A Continental Shift and Its Implications

Although it seems a long way from interstellar space, the early Earth is a fascinating laboratory for life's development that should yield clues about how life takes hold elsewhere. Thus new work on the movements of the early continents catches the eye. In this case, the Gondwana supercontinent is found to have undergone a 60-degree rotation across Earth's surface during a highly interesting period, the Early Cambrian. This is the fecund era when the major groups of complex animals appeared in relatively rapid succession. Gondwana is what we can call the southern precursor supercontinent, a vast region that would eventually separate from Laurasia roughly 200 million years ago when the Pangaea supercontinent broke into two large areas. This Wikipedia article gives you the basics on Gondwana, noting that it included most of the landmass in today's southern hemisphere, including Antarctica, South America, Africa, Madagascar, Australia, New Guinea and New Zealand, along with the Indian...

read more

A New Neptunian Trojan

It's almost exhilarating to find that the volume of space studied in new work on the Trojan asteroids near Neptune includes an area through which New Horizons will pass on its way to Pluto/Charon. This used to seem like an all but unknowable region until Voyager 2 made its Neptune pass, and although it's been a long time since we've had a spacecraft there, we're learning much more about the outer system from Earth-based resources, as the discovery of objects like Eris and Sedna makes clear. We can surely look forward to more surprises as New Horizons moves toward its 2015 flyby and pushes on into the Kuiper Belt. The latest find, based on data from the Subaru Telescope in Hawaii and the Magellan telescopes in Chile, is the first Trojan asteroid found at Neptune's L5 Lagrangian point. Both the L4 and L5 Lagrangian points, 60 degrees ahead of and behind the planet, are stable, meaning that objects tend to collect there over time. Six Neptune Trojans are known in the L4 region, but...

read more

Hoop Sails: An Interstellar Possibility?

When engineer Carl Wiley brought solar sails to a wide audience in 1951, he envisioned a particular kind of sail. Wiley, who wrote under the byline Russell Saunders, published "Clipper Ships of Space" in the May issue of Astounding Science Fiction that year, seven years before the first technical paper on sails, Richard Garwin's "Solar Sailing: A Practical Method of Propulsion within the Solar System," appeared in the journal Jet Propulsion. As you can see in the illustration, which ran with the original essay in Astounding, Wiley envisioned the sail as taking a parachute shape, with the payload attached to the sail circumference. Varieties of Sail Design But there are many ways of doing sails. Square or rectangular sail designs (think of those images of IKAROS shot by its detached cameras) have been the focus of recent work, with the result that many alternatives have not reached the same level of technological readiness. But along with parachute sails, spinning disk sails,...

read more

The Perseid Project: Crowd-sourcing the Meteor Stream

An individual meteorite can tell us much about the composition of ancient Solar System material, but today I want to mention a project that is taking the aggregate view. Chris Crawford has set up the Perseid Laptop Meteor Observation Project as a way to use 'crowd-sourcing' to build up a three-dimensional map of the Perseid meteor stream. Here's what Chris said about it in a recent email: This will be one of the better years for Perseids; the Moon, which often interferes with the Perseids, will not be a problem this year. So I'm putting together something that's never been done before: a spatial analysis of the Perseid meteor stream. We've had plenty of temporal analyses, but nobody has ever been able to get data over a wide area -- because observations have always been localized to single observers. But what if we had hundreds or thousands of people all over North America and Europe observing Perseids and somebody collected and collated all their observations? This is crowd-sourcing...

read more

Adaptive Optics and the Giant Magellan Telescope

Anything we can do to advance the cause of adaptive optics is all to the good. It's obvious that a space-based observatory is preferable if we want to get the sharpest look at a distant object, but launch costs are still high and the kind of intricate interferometry missions that will one day let us take a close look at a distant exoplanet are still on the drawing boards. In the interim, learning how to get around the distortion caused by a planetary atmosphere allows us to do things with Earth-based telescopes that earlier astronomers wouldn't have thought possible. The kind of laser adaptive optics in use at the University of Arizona represents a useful advance in the state of the art. Make a telescope mirror pliable enough to respond to hundreds of actuators positioned on its back side and you can create a series of tiny adjustments as you look at the sky. The adjustments are necessary because atmospheric turbulence blurs the image, the result of rising heat disturbing the air a...

read more

Project Argus: Finding a ‘Benford Beacon’

It's heartening to see James and Gregory Benford's work on extraterrestrial beacons receiving broader coverage. We've looked at the relevant papers in these pages [run a search on 'Benford' in our database and you'll pull up articles by and about them], but news features like this one in TIME Magazine are pushing the Benford brothers' work out to a much larger audience. That's an important step, because right now the view of SETI most likely held by the average person relates to movies like Contact, in which huge dishes pointed at particular stars seem to be the way to proceed. The Benfords want to re-write that scenario in a big way. We'll have to leave as debatable the question about how far away our own television transmissions can be received. James Benford commented here not long ago that a civilization of approximately our technological level would not be able to receive broadcast signals as weak as those we've sent out carrying the likes of Milton Berle and I Love Lucy....

read more

Pegging the Movements of a Potential Impactor

NASA's workshop on identifying objectives for missions to near-Earth objects will be held next week, August 10-11 at the Renaissance Mayflower Hotel in Washington, DC. We can hope that this gathering of NASA leaders, academics, and space experts from across the international community will help keep the public's attention on the need for such missions. Part of the reason for having the workshop is to communicate NASA's preliminary plans for a human mission to an NEO, a useful step as we build expertise about these objects and ponder strategies to handle any future impact scenarios. You can follow the video stream at the appropriate time here. Meanwhile, the continuing survey of near-Earth objects has produced another one, asteroid 101955 1999 RQ36, with a slight impact possibility in 2182. We can call this object a Potentially Hazardous Asteroid (PHA) based on the results from the two mathematical models -- Monte Carlo Method and line of variations sampling -- being used to study it....

read more

Solar Sails: Charting an Operational Future

Japan's IKAROS sail has thus far conducted a triumphant mission, demonstrating the principles of sail deployment, solar photon propulsion and attitude control in a functioning space sail. While the solar sail community has never received the press attention I believe this innovative propulsion technology deserves, it's heartening to realize that a long and sustained effort, even one operating under the radar, so to speak, can produce such striking results. The 2nd International Symposium on Solar Sailing (ISSS 2010) has just wrapped up in Brooklyn, but if you go back to the first of these conferences, conducted in June of 2007 in Ammersee, Germany, you'll find that the program was laced with representatives of ESA, NASA and JAXA (presentations from that meeting are available online), attacking the issue of getting a solar sail operational from every angle even as the budgets of the representative agencies were being cut back. The needed theoretical work proceeds absent the necessary...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives