Icarus: An Early Look at Communications

The Project Icarus weblog is up and running in the capable hands of Richard Obousy (Baylor University). The notion is to re-examine the classic Project Daedalus final report, the first detailed study of a starship, and consider where these technologies stand today. Icarus is a joint initiative between the Tau Zero Foundation and the British Interplanetary Society, the latter being the spark behind the original Daedalus study, and we'll follow its fortunes closely in these pages. For today, I want to draw your attention to Pat Galea's recent article on the Icarus blog on communications. 'High latency, high bandwidth' is an interesting way to consider interstellar signaling. Suppose, for example, that we do something that on the face of it seems absurd. We send a probe to a nearby star and, as one method of data return, we send another probe back carrying all the acquired data. Disregard the obvious propulsion problem for a moment -- from a communications standpoint, the idea makes...

read more

FOCAL: A Renewed Call for Papers

Every few weekends as we move toward the March 5 deadline for submission of abstracts to the next International Astronautical Congress, I'll re-run this call for papers that I originally published in December. The Tau Zero Foundation hopes to energize discussion of FOCAL in the astronautical community and create a growing set of papers analyzing aspects of the mission from propulsion to communications, leading to a formal mission proposal. We hope anyone interested in furthering this work at the coming IAC in Prague will consider submitting a paper. The Tau Zero Foundation is announcing a call for papers related to the FOCAL mission. The venue: The 61st International Astronautical Congress in Prague, which convenes on the 27th of September, 2010 and runs to October 1. Specifically, we are looking for papers for session D4.2, "Interstellar Precursor Missions," whose focus is "...missions that significantly expand science -- using existing and emerging power and propulsion...

read more

Second Smallest Exoplanet Yet Discovered

With the American Astronomical Society meeting now wrapped up in Washington, we're left to mull over the highlights, particularly the Kepler results. But the Keck Observatory also contributed compelling exoplanet news in the form of HD156668b, a planet some eighty light years from earth in the direction of Hercules. Working with Keck data, a research team led by Andrew Howard (University of California at Berkeley) has brought us a world that is only four times the mass of Earth, making this 'super Earth' the second smallest exoplanet yet discovered. Addendum: See andy's note below re planets smaller than this one. More on the 'pulsar planets' here. Using the HIRES instrument (High Resolution Echelle Spectrograph) and the 10-meter Keck I telescope at Mauna Kea, the astronomers teased out the presence of the planet through radial velocity methods, which are responsible for the great majority of the planets thus far discovered. The trick is to work down to smaller and smaller worlds...

read more

Massive Stars: Poor Prospects for SETI

We've long speculated about astrobiology on planets around stars like the Sun, and lately the thinking has moved to M-class dwarfs and whether or not they could be circled by habitable planets. But what about massive stars, classes A and B, where we're looking at two to fifteen times the mass of the Sun? New work from the Harvard-Smithsonian Center for Astrophysics (CfA) and the National Optical Astronomy Observatory (NOAO) tells us that planets form readily around such stars, leading Xavier Koenig (CfA) to tell a press conference at the AAS meeting this week in Washington, "We see evidence of planet formation on fast forward." Make no mistake, massive stars present a challenging environment for planet formation. Their disks may be packed with useful material for building worlds, but the intense stellar radiation and winds from these stars work to destroy the disks in relatively short order. Koenig and colleagues looked at the star-forming region W5, some 6500 light years away in the...

read more

Solar Systems Like Ours in the Minority

William Borucki's talk about the early Kepler findings on Monday created the biggest spike in traffic I've ever seen on Centauri Dreams, enough to blow through our memory allocation and crash the site for about twenty minutes. I had to reboot the server and up the memory to get back online, a tribute to the interest Kepler continues to generate in our community. I'm also getting plenty of comments from people at the American Astronomical Society meeting in Washington. If you use Twitter, use the hashtag #aas to join the ongoing stream of short updates. Right now Scott Gaudi's talk on Tuesday is generating the biggest buzz. Gaudi (Ohio State) reported on a gravitational microlensing effort called MicroFUN (Microlensing Follow-Up Network), one we've previously discussed in these pages. The method is well understood: One star occults another as seen from Earth. The light of the more distant star is magnified by the nearer one, and any planets around the lensing star momentarily boost...

read more

On Kepler’s First Planets

Just how good is Kepler at finding planets? We're getting a pretty good idea. In his talk yesterday at the AAS meeting in Washington, William Borucki (NASA Ames) showed a plot of the lightcurve for previously known planet HAT-P-7. The signature of the planetary transit is unmistakable in these data, a well defined dip in the starlight as HAT-P-7 makes the star just a little dimmer by its passage. Kepler's sensitivity is apparent. But the plot is more fascinating still, for in addition to the well defined signature that denotes the dip in starlight caused by the planet moving across the face of the star, Kepler also saw a second dip. That one was caused by the light of the planet being blocked by the star itself. It's a tiny dip, but one readily demonstrated in Borucki's chart, and it tells us that Kepler is living up to expectations in terms of finding faint signals. We all hope, of course, for a future finding, the faint signal of a terrestrial world, preferably one in the habitable...

read more

Early Kepler Results Today

The American Astronomical Society's 215th national meeting will involve some 3,500 attendees, with more than 2,200 scientific presentations on the program, but this morning the buzz is all about Kepler and the early results to be announced today. William Borucki (NASA Ames) spoke at 0830 to announce the first planets discovered by Kepler, five exoplanets (none smaller than Neptune), that include what appears to be a highly irradiated 'Neptune' and a second planet (Kepler 7b) that is the least dense world ever discovered, with a density similar to styrofoam. It, along with three other new exoplanets, gives us insight into planets with densities substantially lower than what we expect from gas giants. Borucki also described another unusual find, Jupiter-sized objects that are hotter than the stars they orbit. A live stream from the AAS is available here, and a Twitter stream at #aas. The paper from Borucki et al. will be published online by Science on Thursday January 7. Later today,...

read more

Cyclers: Transportation Network Among the Stars?

Last July at the Aosta conference Greg Matloff presented a paper on using near-Earth objects for transportation. It's an interesting concept (discussed here), one that takes advantage of the fact that there are a few such objects that pass close by the Earth and then go on to cross the orbit of Mars. Greg was able to show that it would be possible to exploit this trajectory to use the NEO as what Buzz Aldrin has called an 'orbital cycler,' hitching a ride at least one way and disembarking upon arrival. Reducing Starship Mass The idea is useful because space travel requires so much energy. Put all this in the interstellar context, as science fiction writer Karl Schroeder does in this interesting essay, and you realize that whether we're talking about beamed sails or antimatter or nuclear fusion, most of the mass of the vehicle is involved with accelerating and decelerating it. Schroeder pondered the question of using the cycler idea on an interstellar level. All you decelerate at...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives