Back in the days when the Solar System seemed a simpler place, asteroids were thought to be chunks of rocks whose features could be explained by impacts with other such objects. Comets were altogether different, laden with icy material that erupted when heated by the Sun. It was a straightforward picture, at a time when the system had nine planets, icy 'dwarf planets' were not yet in vogue, and distinctions between orbiting objects were clearly drawn. Today we work with a more complicated scenario, one in which some objects once thought of as asteroids develop comet-like features that can last for months. Thus the interest in the asteroid called (596) Scheila, which late last year developed plumes after brightening unexpectedly in December. Orbiting the Sun every five years, Scheila has a diameter of about 110 kilometers, and evidence from both the Hubble Space Telescope and the Swift satellite now indicates that the unusual activity here was caused by a collision with a smaller...
Tiny Spacecraft Point to Future Sails
Spacecraft no more than an inch square will fly aboard the next (and last) Shuttle flight to the International Space Station. The work of Mason Peck (Cornell University), the micro-satellites weigh in at less than one ten-millionth of the mass of the original Sputnik, yet can accomodate all the systems we associate with a spacecraft -- power, propulsion, communications -- on a single microchip. We've looked at Peck's work in previous Centauri Dreams essays (see this one on 'smart dust'), but it's great to see some of his concepts put into an actual mission plan for testing in Earth orbit. What Peck has in mind with the spacecraft he calls 'Sprite' is ultimately to create a satellite with different flight dynamics from other spacecraft. Sure, we can miniaturize our electronics and create satellites with small form factors -- CubeSats come to mind -- but Peck's craft call up a different analogy: "Their small size allows them to travel like space dust," said Peck. "Blown by solar winds,...
Trouble at Hat Creek
What is 'space situational awareness,' and what does it have to do with SETI? The answer begins with the collision of a Russian Cosmos 2251 satellite with one of the 66 communications satellites that comprise the Iridium satellite constellation, a worldwide voice and data system. The collision, which occurred on February 10, 2009 produced hundreds of pieces of debris. The Air Force Space Command needs ways of tracking such debris, which poses a threat in the increasingly crowded skies above our planet. Enter the Allen Telescope Array, known primarily as a state-of-the-art center for the SETI effort to identify other intelligent species in the galaxy. The ATA caught the Air Force's eye as a way of tracking and cataloging man-made objects in orbit. Located in a volcanic valley near the Lassen National Forest in California, the array has proven its worth at this task in early tests, a fact that could inspire a new funding source for the observatory. And as we learned to our dismay...
Icarus: Fusion and Secondary Technologies
Discovery News now offers fully ten articles on Project Icarus and its background, written by the Icarus team and assembled on the site by Ian O'Neill. I was startled to realize how the list had grown, but it reminds me to point periodically to this collection, because Icarus -- the attempt to re-design the Project Daedalus starship study of the 1970s -- is a work very much in progress. Icarus is a joint project of the Tau Zero Foundation and the British Interplanetary Society. The latest article on the team's work is by physicist Andreas Tziolas, who in addition to being a frequent Centauri Dreams contributor is also secondary propulsion lead for the Icarus effort. It's no surprise that the biggest issue surrounding an interstellar probe is the propulsion system, which for Icarus means fusion, a method offering as much as a million times better performance than our current chemical rocket technologies, if we can ever figure out just how to harness it. The Icarus team chose fusion...
Saturn Aurora Offers Clues to Enceladus
Last week we looked at the possibility of using a planet's aurora as an exoplanet detection tool, speculating that the LOFAR radio telescope in Europe might be able to detect such an emission, and I reminisced about listening for emissions from Jupiter on an old shortwave receiver. Jonathan Nichols' work at the University of Leicester makes the case for exoplanet detections, and recent news from analysis of Cassini data indicates that planetary aurorae can do more than just flag the presence of a planet. In some cases, they can provide information about that planet's moons, as in the case of Saturn, where careful analysis may offer us new insights into Enceladus. For it turns out that the electrical connection between Saturn and Enceladus is rather robust. Moreover, it was a connection that scientists had anticipated, given that in the Jovian system, Io creates a glowing auroral footprint near Jupiter's north and south poles. Why not expect something similar in the case of Enceladus,...
Exoplanet Aurora as Detection Tool
Although we're finding more and more exoplanets, we can always use another technique besides radial velocity, transit searches, direct imaging and microlensing. And now Jonathan Nichols (University of Leicester) has proposed one at the Royal Astronomical Society's meeting in Llandudno, Wales, which concluded its proceedings yesterday. Nichols has the notion of looking for the radio emissions generated by the aurorae of planets like Jupiter, believing that these could be detected by radar telescopes like the soon to be completed LOFAR. Now LOFAR (Low Frequency Array) is quite a story in itself, being the largest radio telescope ever constructed. The idea here is to create a vast array of some 7000 small antennae, distributed among some 77 larger stations across the Netherlands, Germany, Great Britain, France and Sweden. You wind up with a total collecting area whose interferometric data can be processed by a supercomputer at the University of Groningen in the Netherlands. The key here...
Probing Pluto’s Changeable Atmosphere
The study of carbon monoxide found in the atmosphere of Pluto -- a strong signal rendered in data from the James Clerk Maxwell Telescope in Hawaii -- gives us insight into the significant changes happening to the dwarf planet on its 248-year orbital path around the Sun. Pluto is one of a kind, offering us a cold planetary atmosphere that shows marked changes over time, an atmosphere that may at times freeze out and settle to the surface. No other dwarf planet is known to have an atmosphere, and Pluto's is now known to vary in pressure and probably in composition. Jane Greaves (University of St. Andrews) led the team doing the new Pluto work, and she's the first to admit that what the data revealed was a surprise. Pluto reached perihelion in 1989, its closest approach to the Sun, so astronomers assumed that as it began to recede, the atmosphere would contract. But as measured by the occultation of background stars, the atmospheric pressure and size actually increased between 1988 and...
SETI: The Michaud/Cooper Dialogue
Space writer Keith Cooper, the editor of the UK's Astronomy Now, is currently attending the Royal Astronomical Society's meeting in Llandudno, Wales -- in fact, the photo of him just below was taken the other day in Llandudno. But the frantic round of presentations hasn't slowed Keith down. When last spotted in these pages, he was engaged in a dialogue with me about SETI issues. That exchange got me thinking about having Keith talk to Michael Michaud, considering their common interests and realizing that they had already met at last year's Royal Society meeting where so many of these issues were discussed. Michael was kind enough to agree, and what follows is an exchange of views that enriches the SETI debate. Centauri Dreams readers know Michael Michaud to be the author of the essential Contact with Alien Civilizations: Our Hopes and Fears about Encountering Extraterrestrials (Springer, 2006), but he's also the author of over one hundred published works, many of them on space...
Beyond the Red Edge
If you study 'earthshine,' the light of our planet reflected off the unlit part of the Moon, you can discover much about how life leaves an imprint upon a spectrum. It's a useful exercise because one of these days we'll have the tools in place to be examining the spectrum of a terrestrial world around another star. In Earth's case, what two different teams have found is that water vapor, oxygen and ozone can be traced, just the kind of biosignatures we'd hope to find on a terrestrial world elsewhere. Careful study of the spectrum of earthshine also turns up a tentative detection of the so-called 'red edge' signature of chlorophyll. What's happening is that plants on our planet absorb visible light as part of the process of converting sunlight into energy. Beyond about 0.7 microns, just a bit longer in wavelength than the frequencies we can see, the same plants become highly reflective. This increase in reflectivity shows up as a sharp rise in the red part of the spectrum, hence the...
WASP-12b: A Magnetic Bow Shock
A number of interesting things are coming out of the Royal Astronomical Society's now convening meeting in Llandudno, Wales, many of them still embargoed, though we'll be able to discuss them later in the week. But among the papers now open for discussion, I was drawn to work by Aline Vidotto and colleagues at the University of St. Andrews. Vidotto has been working with the exoplanet WASP-12b, a 'hot Jupiter' discovered in transit by the wide-field cameras of the SuperWASP project (WASP stands for Wide Angle Search for Planets). The work focuses on how a planetary 'bow shock' can protect an exoplanet's atmosphere from emissions from its host star. For the new evidence Vidotto and team are discussing at Llandudno shows that there are signs of a magnetosphere around WASP-12b. Discovered in 2008, this 'hot Jupiter' is one of the largest exoplanets yet found, more than 250,000 kilometers in diameter. It's also an extremely hot planet, orbiting the star designated WASP-12 every 26 hours,...
WISE: “Millions of Newfound Objects”
Data from the first 57 percent of the sky surveyed by the WISE mission (Wide-Field Infrared Survey Explorer) are now available and accessible through the online archive. You can dig into the archive hunting for WISE imagery right now, as I did this morning to retrieve this Alpha Centauri image. The WISE team has put up a help page on the image data service with useful information about how to find and work with color images. The method is straightforward: You enter a name or set of coordinates for stars, nebulae or galaxies, choose the size of the image to retrieve (the defaults bring you images from each of the four WISE detectors), and select three of the four WISE bands to pull up a color image that combines their results. Play around with the help page a bit and you'll quickly become familiar with the setup, and there is further help available within the archive itself. We have much more to come from WISE, with the complete survey, including improved data processing, scheduled...
Astronomy in Year Trillion
We’ve got to come up with a better name that ‘Milkomeda’ to describe what’s going to eventually happen when the Milky Way and Andromeda merge. Remember that Andromeda is one of the galaxies with a blueshift, showing that it is moving toward us. That the merger will probably happen -- in about five billion years -- appears inevitable, and it’s fascinating to speculate on the evolution of the elliptical galaxy that should result from all this. In fact, Avi Loeb (Harvard-Smithsonian Center for Astrophysics) and colleague T.J. Cox have run computer simulations showing a faint possibility that our Solar System will be pulled into a ‘tidal tail’ of orphan stars and eventually, before the final merger, wind up in the Andromeda galaxy. But after a series of close passes, the galaxies will most likely begin to intermingle. Loeb is the one behind the Milkomeda coinage, but I’ve also heard the even worse ‘Milkymeda’ and the at least acceptable ‘Andromeda Way.’ There’s plenty of time to work...
Visualizing Warped Spacetime
What on Earth -- or off it -- could inspire a physicist with the credentials of Caltech's Kip Thorne to say "I've never before coauthored a paper where essentially everything is new. But that's the case here." Yet if Thorne couldn't say that about some of his earlier work with wormholes (!), he feels safe in saying it about the new tools for visualizing warped space and time that are discussed in a paper he and his colleagues have just published. Imagine space and time undulating in hitherto unfathomable patterns as objects like black holes run into each other. How do we visualize such effects in a credible way? The new tools help us do just that. They are the result of powerful computer simulations that bring to visual life the complex equations of black hole mergers and other extreme events, and they should help us with problems like this one: Manuela Campanelli (University of Texas in Brownsville) and team used simulations a few years ago to show that colliding black holes produce...
Europa: Thin Ice and Contamination
These days funding for missions to some of the most interesting places in the Solar System is much in question. But sooner or later we're going into the outer system to investigate the possibilities for life on worlds like Europa, Enceladus or Titan. The case for Europa seems particularly compelling, but we have to be careful about our assumptions. When the Europa Orbiter Science Definition Team developed a strategy for Europan exploration in 1999, it was generally believed that any Europan ocean would be covered by a thick and impermeable layer of ice. Life, then, might exist around deep sub-oceanic volcanic vents if it existed at all. Thus the strategy for Europan exploration that evolved: Three missions, beginning with an orbiter, followed up by a lander and, finally, a third mission that would drill down through the presumably many kilometers of surface ice to explore whatever lay beneath. Even in more financially optimistic times, that strategy didn't get us into Europa's ocean...
New Debate over Volcanoes on Titan
Back in December, scientists from the Cassini team presented evidence for ice volcanoes on Titan, looking at a region called Sotra Facula, which bears some resemblance to volcanoes on Earth like Mt. Etna in Italy and Laki in Iceland. An ice volcano, also known as a cryovolcano, would draw on geological activity beneath the surface that warms and melts parts of the interior and sends icy materials through a surface opening. Sotra Facula's two 1000-meter peaks combine what appear to be deep volcanic craters with finger-like flows of material, a kind of surface sculpting that could explain some of the processes occurring on other ice-rich moons. But work like this is part of an ongoing dialogue testing various hypotheses, and the latest round takes us in a sharply different direction. In a new paper in Icarus, Jeff Moore (NASA Ames) and Robert Pappalardo (JPL) argue that Titan is in fact much less geologically active than some have thought. A cool and dormant interior would be incapable...
Imaging Red Dwarf Planets
If you're trying to get actual images of exoplanets, it helps to look at M-dwarfs, particularly young ones. These stars, from a class that makes up perhaps 75 percent of all the stars in the galaxy, are low in mass and much dimmer than their heavier cousins, meaning the contrast between the star's light and that of orbiting planets is sharply reduced. Young M-dwarfs are particularly helpful, especially when they are close to Earth, because their planets will have formed recently, making them warmer and brighter than planets in older systems. The trick, then, is to identify young M-dwarfs, and it's not always easy. Such a star produces a higher proportion of X-rays and ultraviolet light than older stars, but even X-ray surveys have found it difficult to detect the less energetic M-dwarfs, and in any case, X-ray surveys have studied only a small portion of the sky. Astronomers at UCLA now have hopes of using a comparative approach, working with the Galaxy Evolution Explorer satellite,...
Stable Orbit for a Newly Discovered Companion
The Earth is followed around the Sun by several Near Earth Asteroids in what are called 'horseshoe orbits.' Have a look at the NASA image below showing the orbital contours of such orbits. You can see the horseshoe shape, so called because the object's apparent direction changes as seen by a viewer on the Earth. What's happening is that the gravitational attraction of the Earth is changing the asteroid's elliptical orbit. Even though the asteroid always orbits the Sun in the same direction, it cycles between catching up with the Earth and falling behind. It's the relative motion of the object with relation to both the Sun and the Earth that produces the horseshoe effect. Image: Starting out at point A on the inner ring between L5 and Earth, the satellite is orbiting faster than the Earth. It's on its way toward passing between the Earth and the Sun. But Earth's gravity exerts an outward accelerating force, pulling the satellite into a higher orbit which - counter-intuitively -...
Wild 2: Liquid Water Inside a Comet?
What goes on inside Kuiper Belt objects in the outer reaches of the Solar System? We can get some idea from what we're learning about comets like Wild-2, dust grains of which were brought back to Earth in 2006 as part of the Stardust mission. The thinking about Wild-2 is that, like many comets, it originated in the Kuiper Belt out of icy debris left over from the formation of the Solar System. But its orbit was eventually disrupted by Jupiter's gravitational influence on a pass through the inner system, sending the comet into a new, highly elliptical orbit. Image: Comet Wild 2, which NASA's Stardust spacecraft flew by on Jan. 2, 2004. The picture on the left is the closest short exposure of the comet. The listed names on the right are those used by the Stardust team to identify features. "Basin" does not imply an impact origin. Credit: NASA/Stardust mission. Now analysis of Wild-2's dust grains is changing our view of cometary interiors. A new study by Eve Berger and Dante Lauretta...
Impact Events Shown by Planetary Rings
Send a spacecraft into the outer Solar System and unexpected things can happen. We're all anticipating the arrival of the New Horizons probe at Pluto/Charon in 2015, but the work the spacecraft has done along the way has recently been highlighted again. Moving toward Jupiter in 2007, New Horizons was programmed to image Jupiter's ring system in the hope of catching details about an odd effect. Back in the 1990s, the Galileo probe had shown unusual patterns in the Jovian ring, and the New Horizons imagery was able to spot not only the patterns Galileo had seen but two new ripple patterns as well, evidence of recent events in the Jovian system. Image: The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter in February 2007. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the...
At System’s Edge: The IBEX ‘Ribbon’
Studying the heliosphere and its interactions with the interstellar medium isn't easy, which is one among many reasons we follow the fortunes of the Voyager probes with such continuing fascination. They're pushing up against the boundary between the Sun's local 'bubble' and deep space beyond, where charged particles from the solar wind are no longer a factor and the deeper rhythms of the galaxy take hold. Now our other probe of this exotic region is back in the news in a new paper. IBEX (the Interstellar Boundary Explorer) is telling us much about how our system interacts with the interstellar medium and the effects of the galactic magnetic field upon the heliosphere. IBEX has provoked much discussion in these pages -- I was amazed to see I had written fully thirteen articles on the mission in the last six years, going back to pre-launch speculations. The mission caught my eye because it was the first ever sent with the express purpose of studying the outer edges of the Solar System....