Asteroids are certainly having their moment in the press, what with the combined attention being paid first to Planetary Resources and its plans for asteroid mining, and now the B612 Foundation, with a plan that in some ways tracks the Planetary Resources model. As announced yesterday, B612 intends to build a space telescope using private funding and launch it into a Solar orbit, from which it can carry out discovery and mapping operations targeting asteroids that might pose a threat to the Earth. You'll recall that Planetary Resources also has an ambitious agenda in terms of developing a series of small space telescopes. NASA, it's true, is already searching for Earth-crossing asteroids, and between ground-based efforts and space-borne missions like the Wide-Field Infrared Survey Explorer, thousands of asteroids that pass near the Earth have been discovered. But what the B612 Foundation is calling Sentinel will be dedicated to finding the smaller objects whose effect could still be...
Measuring Non-Transiting Worlds
Although I want to move on this morning to some interesting exoplanet news, I'm not through with fusion propulsion, not by a long shot. I want to respond to some of the questions that came in about the British ZETA experiment, and also discuss some of Rod Hyde's starship ideas as developed at Lawrence Livermore Laboratory in the 1970s. Also on the table is Al Jackson's work with Daniel Whitmire on a modified Bussard ramjet design augmented by lasers. But I need to put all that off for about a week as I wait for some recently requested research materials to arrive, and also because next week I'm taking a short break, about which more on Monday. For today, then, let's talk about an advance in the way we study distant solar systems, for we're finding ever more ingenious ways of teasing out information about exoplanets we can't even see. The latest news comes from the study of Tau Boötis b, a 'hot Jupiter' circling its primary -- a yellow-white dwarf about 20 percent more massive than...
Fusion and the Starship: Early Concepts
Having looked at the Z-pinch work in Huntsville yesterday, we've been kicking around the question of fusion for propulsion and when it made its first appearance in science fiction. The question is still open in the comments section and I haven't been able to pin down anything in the World War II era, though there is plenty of material to be sifted through. In any case, as I mentioned in the comments yesterday, Hans Bethe was deep into fusion studies in the late 1930s, and I would bet somewhere in the immediate postwar issues of John Campbell's Astounding we'll track down the first mention of fusion driving a spacecraft. While that enjoyable research continues, the fusion question continues to entice and frustrate anyone interested in pushing a space vehicle. The first breakthrough is clearly going to be right here on Earth, because we've been working on making fusion into a power production tool for a long time, the leading candidates for ignition being magnetic confinement fusion...
Z-Pinch: Powering Up Fusion in Huntsville
The road to fusion is a long slog, a fact that began to become apparent as early as the 1950s. It was then that the ZETA -- Zero-Energy Toroidal (or Thermonuclear) Assembly -- had pride of place as the fusion machine of the future, or so scientists working on the device in the UK thought. A design based on a confinement technique called Z-pinch (about which more in a moment), ZETA began operations in 1957 and began producing bursts of neutrons, thought to flag fusion reactions in an apparent sign that the UK had taken the lead over fusion efforts in the US. This was major news in its day and it invigorated a world looking for newer, cheaper sources of power, but sadly, the results proved bogus, the neutrons being byproducts of instabilities in the system and not the result of fusion at all. Fusion has had public relations problems ever since, always the power source of the future and always just a decade or two away from realization. But of course, we learn from such errors, and...
Uses of a Forgotten Cluster
Astronomical surprises can emerge close to home, close in terms of light years and close in terms of time. Take NGC 6774, an open cluster of stars also known as Ruprecht 147 in the direction of Sagittarius. In astronomical terms, it's close enough -- at 800 to 1000 light years -- to be a target for binoculars in the skies of late summer. In chronological terms, the cluster has had a kind of re-birth in our astronomy. John Herschel identified it in 1830, calling it 'a very large straggling space full of loose stars' and including it in the General Catalog of astronomical objects. But NGC 6774 remained little studied, and it took a more intensive look by Jaroslav Ruprecht in the 1960s to give the cluster both a new name and a firmer identity. This loose group of stars had long been thought to be an asterism, a chance alignment of stars that when seen from the Earth gave the impression of being a cluster. Ruprecht realized this was no asterism, and now new work with the MMT telescope in...
Celestial Spectacle: Planets in Tight Orbits
I've always had an interest in old travel books. A great part of the pleasure of these journals of exploration lies in their illustrations, sketches or photographs of landscapes well out of the reader's experience, like Victoria Falls or Ayers Rock or the upper reaches of the Amazon. Maybe someday we'll have a travel literature for exoplanets, but until that seemingly remote future, we'll have to use our imagination to supply the visuals, because these are places that in most cases we cannot see and in the few cases when we can, we see them only as faint dots. None of that slows me down because imagined landscapes can also be awe-inspiring. This morning I'm thinking about what it must be like on the molten surface of the newly discovered world Kepler-36b, a rocky planet 1.5 times the size of Earth and almost 5 times as massive. This is not a place to look for life -- certainly not life as we know it -- for it orbits its primary every 14 days at a scant 17.5 million kilometers. But if...
Robotics: Anticipating Asimov
My friend David Warlick and I were having a conversation yesterday about what educators should be doing to anticipate the technological changes ahead. Dave is a specialist in using technology in the classroom and lectures all over the world on the subject. I found myself saying that as we moved into a time of increasingly intelligent robotics, we should be emphasizing many of the same things we'd like our children to know as they raise their own families. Because a strong background in ethics, philosophy and moral responsibility is something they will have to bring to their children, and these are the same values we'll want to instill into artificial intelligence. The conversation invariably summoned up Asimov's Three Laws of Robotics, first discussed in a 1942 science fiction story ('Runaround,' in Astounding Science Fiction's March issue) but becoming the basic principles of all his stories about robots. In case you're having trouble remembering them, here are the Three Laws: A...
Revising Our Starship Assumptions
We all carry our assumptions with us no matter where we go, dubious extra baggage that can confuse not just our scientific views but our lives in general. That's why it's so refreshing when those assumptions are challenged in an insightful way. Think, for example, of the starship as envisioned by Hollywood. In our times it looks like something produced by the joint efforts of NASA, ESA and other governmental space agencies. No matter how diverse the crew, the model is always based on western culture, the assumptions reflecting our modern ethos. When an assumption is ripe for questioning, along comes a writer like Michael Bishop. Consider the starship Kalachakra, carrying a crew of 990 to a planet in the Gliese 581 system, as envisioned in Bishop's 'Twenty Lights to the Land of Snow,' a novella in the Johnson/McDevitt book Going Interstellar. Most of the crew spends the flight in hibernation using the wonderfully named drug ursidormizine -- thus slumbering 'bear-like' -- but each...
Interstellar Flight in the News
Tau Zero founder Marc Millis is interviewed by Bruce Dorminey in Forbes this week, the logical first question being where interstellar flight ranks on our list of priorities. A case can be made, after all, that we have yet to get humans beyond the Moon, and that while we have managed robotic missions to the outer planets, our technologies need development closer to home. Should a Moon base get our attention, or a Mars mission? Millis argues that pursuing next steps like these should be managed in tandem with the pursuit of more far-reaching advances that force us to look beyond existing methods. Breakthroughs can change everything, and Millis is, after all, the former head of NASA's Breakthrough Propulsion Physics project, which came to an abrupt end in 2002 when a congressional earmark to build a propulsion laboratory in Alabama -- one that cost more than all NASA's BPP research put together -- scarfed up what could have been research money. And as Millis tells Dorminey, we're left...
Voyager 1 Nearing Interstellar Space
It should come as no surprise to anyone who follows Centauri Dreams that I am a great admirer of Ed Stone, the former director of the Jet Propulsion Laboratory (from 1991 to 2001) and more than any single scientist, the public face of many of our missions to the outer Solar System. Stone's work on space projects began as far back as 1961 with the cosmic ray experiments he designed for the Discoverer satellites, but it was as project scientist for the Voyager missions that he became a familiar figure to audiences worldwide. His tenure at JPL saw missions like Mars Pathfinder, the Sojourner rover, Deep Space 1 and the launches of Cassini and Stardust. That, of course, is only a partial list, but it gives you the drift. This morning I'm thinking about Stone again because of a quote he provided for a recent JPL news release. Here again he's talking about the Voyagers, which are pushing up against the edge of the system: "The laws of physics say that someday Voyager will become the first...
Titan’s Lakes and the Drive to Explore
What is it that makes us want the stars? Surely there are philosophical reasons that push us into the universe, and in his book Quest: The Essence of Humanity (2004), Charles Pasternak delves into 'questing' as a drive embedded in the species. But alongside a need to explore I can see two other drivers. One is the urge to know whether life exists elsewhere, and ultimately, whether there are other technological civilizations somewhere in the galaxy. The other is simple survival: We need to move into the universe as a backup plan in case of disaster here on Earth, whether that disaster is caused by an asteroid or a human activity gone awry. This morning I'm musing on all this in the context of recent news from the outer Solar System, where the data we're analyzing from the Cassini mission are matched only by our desire to have still further, more targeted explorations. We learn, for example, that Titan has lakes around its equator. Lakes on Titan aren't a surprise: We've already known...
Small Planets: No Need for High Metallicity?
In astronomy, the word 'metals' refers to anything heavier than hydrogen and helium. Stars fuse hydrogen into helium and from there work their way into the higher elements until hitting iron, at which point the end quickly comes, with 'star stuff,' as Carl Sagan liked to put it, being flung out into the universe. Through stellar generations we can trace a higher concentration of the heavier elements as stars are born from the materials of their predecessors. And we've learned that those metal-rich stars are the most likely to produce gas giants like Jupiter and Saturn. What's intriguing is the issue of smaller planets and the conditions for their formation. After all, the content of the disk from which planets are formed parallels the metallicity of the host star. I'm looking at new research from Lars A. Buchhave (Niels Bohr Institute/University of Copenhagen) into planet formation, using data from the Kepler telescope. In Buchhave's words: "We have analysed the spectroscopic...
Star Consciousness: An Alternative to Dark Matter
by Dr. Gregory L. Matloff Gregory Matloff is a major figure in what might be called the 'interstellar movement,' the continuing effort to analyze our prospects for travel to the stars. Greg is Emeritus Associate Professor and Adjunct Associate Professor in the Department of Physics at New York City College of Technology as well as Hayden Associate at the American Museum of Natural History. Centauri Dreams readers will know him as the author (with Eugene Mallove) of The Starflight Handbook (Wiley, 1989) and also as author or co-author of recent books such as Deep Space Probes (2005), Living Off the Land in Space (2007) and Solar Sails: A Novel Approach to Interplanetary Travel (2010). My own acquaintance with Greg's work began with the seminal JBIS paper "Solar Sail Starships: The Clipper Ships of the Galaxy" (1981), and the flow of papers, monographs and books that followed have set high standards for those investigating our methods for going to the stars, and the reasons why we...
Exoplanets: Weeding Out False Positives
The success of the Kepler mission in sifting through a field of more than 150,000 stars to locate transiting planets is undeniable, and the number of planets thus far discovered has been used to estimate how often planets occur around stars like the Sun. Now comes a paper to remind us that statistical analysis based on Kepler results assumes that most of the planet candidates are real and not false positives. Alexandre Santerne, a graduate student at the University of Aix-Marseille, has worked with a team of researchers to study the false positive rate for giant planets orbiting close to their star. 35 percent of these Kepler candidates may be impostors. The problem is that eclipsing binaries can mimic planetary transits, which is why scientists perform follow-up radial velocity studies or use transit timing variations (TTV) to confirm the existence of the planet. Another technique is to systematically exclude all possible false positive scenarios to a high level of confidence....
Brown Dwarfs Sparser than Expected
Nobody has been anticipating the results from WISE -- the Wide-field Infrared Survey Explorer -- any more than I have. Speculations about the number of brown dwarfs in the galaxy have been all over the map, with some suggesting they might be as plentiful as M-dwarfs, which make up perhaps 80 percent of the stellar population. But the latest results from our infrared scan of the sky argue a much different result: Brown dwarfs turn out to be considerably more rare than stars, with an initial tally of the WISE data showing just one brown dwarf for every six stars. Thus Davy Kirkpatrick, a member of the WISE science team at NASA's Infrared Processing and Analysis Center at Caltech: "This is a really illuminating result. Now that we're finally seeing the solar neighborhood with keener, infrared vision, the little guys aren't as prevalent as we once thought." Ouch. The nice thing about a sky full of undiscovered brown dwarfs was that it might serve up interstellar destinations closer than...
Science, Fiction and the Sail
Thinking about the poem "To Sail Beyond the Sun: A Luminous Collage," which I published excerpts from yesterday, I was reminded that if Ray Bradbury didn't spend a lot of time on solar sails, many of his compatriots did. Indeed, the early story of the solar sail is inseparable from science fiction. Astounding Science Fiction's John Campbell published the first serious look at solar sails for propulsion all the way back in May of 1951. The article's title, "Clipper Ships of Space," would be echoed by a highly influential paper by Gregory Matloff and Eugene Mallove called "Solar Sail Starships: The Clipper Ships of the Galaxy," which ran in the Journal of the British Interplanetary Society in 1981. The thirty years that passed between publication of the two articles saw the solar sail come into its own as a serious mission concept. Carl Wiley, who wrote the essay in Astounding, knew that many scientists and engineers were science fiction readers, but he was concerned enough about his...
On Ray Bradbury
Thinking of Ray Bradbury, as I suppose most of us were yesterday after learning of his death, I found my reminiscences of his work mixing with what was to have been today's topic, solar sails and their beamed sail counterparts. I've read almost all of Bradbury's work up through the 1960s and admittedly little after that, but he's a writer I return to often to try to recapture the early magic. I was going through his stories trying to think of one involving solar sails and I came up blank, but in a moment of pure serendipity, I realized that a book I mentioned yesterday held a little Bradbury gem that was all about sails and their implications for the human imagination. The book is Arthur C. Clarke's collection Project Solar Sail (Roc, 1990), which contains a poem Bradbury wrote with Jonathan V. Post called "To Sail Beyond the Sun: A Luminous Collage." Like so much of Bradbury's work, it uses language like witchcraft to pull you into the experience, and like so much of the later...
Big Sails, Challenging Dreams
I've been thinking about solar sails these past few days, a topic that inevitably invokes Arthur Holly Compton, who first demonstrated that x-rays have particle-like properties. Compton's experiments in 1923 produced a body of work for which he would receive the Nobel Prize in Physics later that decade. Thanks to him we learned that while photons have no mass, they do have momentum, a useful fact for space exploration in that momentum can be transferred to a thin reflective sail, like the Japanese IKAROS that was successfully launched and tested in space in 2010. No question that the force is tiny -- a sail would have to be a square mile in area to feel just five pounds of force at the Earth's distance from the Sun. The beauty of the sail, of course, is that it can keep producing thrust as long as it's in sunlight. But how to increase the thrust? In an essay in his new book Going Interstellar (edited with Jack McDevitt and just out from Baen), Les Johnson notes that if we wanted to...
A Space Telescope on the Cheap
Back in 1997, astronaut John Grunsfeld pulled off one of the great radio gags of all time by calling in to National Public Radio's 'Car Talk' program while orbiting the Earth aboard Atlantis in STS-81. He had called to complain about his vehicle's performance which, as he told the show's hosts -- known as 'Click and Clack, the Tappet Brothers' -- was driving him crazy. His troublesome ride would buck and rattle and run loud for four minutes, then get much quieter for another ten, and then the engine would quit. Odd behavior for any vehicle but the Space Shuttle, as Click and Clack eventually realized, and a memorable exploit for Grunsfeld's second Shuttle mission. Image: A bumpy ride to orbit -- liftoff of STS-81 on January 12, 1997. Credit: NASA. Grunsfeld is more commonly remembered as a repairman for the Hubble Space Telescope, a task he performed on three subsequent missions without the help of 'Car Talk.' Now the astronaut, with over 58 days in space and eight space-walks, is in...
HD 189733b: An Evaporating World?
While we wait for the last transit of Venus of the century, it's worth remembering how tricky transit studies can be when we push them out to exoplanetary distances. You would think that catching a transit of a planet like Venus, closer to us than the Sun, would be simplicity itself, but the orbital planes of Venus and the Earth are not precisely enough aligned to allow for more than a pair of transits followed by over a century of waiting for the next. I've just received a copy of Mark Anderson's The Day the World Discovered the Sun (Da Capo Press, 2012) and will be writing about 18th Century transit studies and their impact in coming weeks. The transits Anderson writes about and the expeditions that ranged the globe to study them played a role in helping astronomers understand the dimensions of the Solar System. And you can see that if Venus is a challenge, tracking planets around other stars will push our technology to its limit. Nonetheless, we're getting quite good at teasing...