People keep asking what I think about Christopher Nolan’s new film ‘Interstellar.’ The answer is that I haven’t seen it yet, but plan to early next week. Some of the attendees of the Tennessee Valley Interstellar Workshop were planning to see the film on the event’s third day, but I couldn’t stick around long enough to join them. I’ve already got Kip Thorne’s The Science of Interstellar queued up, but I don’t want to get into it before actually seeing the film. I’m hoping to get Larry Klaes, our resident film critic, to review Nolan’s work in these pages.

Through the Wormhole

Wormholes are familiar turf to Al Jackson, who spoke at TVIW on the development of our ideas on the subject in science and in fiction. Al’s background in general relativity is strong, and because I usually manage to get him aside for conversation at these events, I get to take advantage of his good humor by asking what must seem like simplistic questions that he always answers with clarity. Even so, I’ve asked both Al and Marc Millis to write up their talks in Oak Ridge, because both of them get into areas of physics that push beyond my skillset.

wormhole1

Al’s opening slide was what he described as a ‘traversable wormhole,’ and indeed it was, a shiny red apple with a wormhole on its face. What we really want to do, of course, is to connect two pieces of spacetime, an idea that has percolated through Einstein’s General Relativity down through Schwarzchild, Wheeler, Morris and Thorne. The science fiction precedents are rich, with a classic appearance in Robert Heinlein’s Starman Jones (1953), the best of his juveniles, in my opinion. Thus our hero Max explains how to get around the universe:

You can’t go faster than light, not in our space. If you do, you burst out of it. Buf it you do it where space is folded back and congruent, you pop right back into our space again but it’s a long way off. How far off depends on how it’s folded. And that depends on the mass in the space, in a complicated fashion that can’t be described in words but can be calculated.

I chuckled when Al showed this slide because the night before we had talked about Heinlein over a beer in the hotel bar and discovered our common admiration for Starman Jones, whose description of ‘astrogators’ — a profession I dearly wanted to achieve when I read this book as a boy — shows how important it is to be precisely where you need to be before you go “poking through anomalies that have been calculated but never tried.” Great read.

If natural wormholes exist, we do have at least one paper on how they might be located, a team effort from John Cramer, Robert Forward, Michael Morris, Matt Visser, Gregory Benford and Geoffrey Landis. As opposed to gravitational lensing, where the image of a distant galaxy has been magnified by the gravitational influence of an intervening galaxy, a wormhole should show a negative mass signature, which means that it defocuses light instead of focusing it.

Al described what an interesting signature this would be to look for. If the wormhole moves between the observer and another star, the light would suddenly defocus, but as it continues to cross in front of the star, a spike of light would occur. So there’s your wormhole detection: Two spikes of light with a dip in the middle, an anomalous and intriguing observation! It’s also one, I’ll hasten to add, that’s never been found. Maybe we can manufacture wormholes? Al described plucking a tiny wormhole from the quantum Planck foam, the math of which implies we’d have to be way up the Kardashev scale to pull off any such feat. For now, about the best we can manage is to keep our eyes open for that astronomical signature, which would at least indicate wormholes actually exist. The paper cited above, by the way, is “Natural Wormholes as Gravitational Lenses,” Physical Review D (March 15, 1995): pp. 3124-27.

wormhole_2

Enter the Space Drive

To dig into wormholes, the new Thorne book would probably be a good starter, though I base this only on reviews, as I haven’t gotten into it yet. Frontiers of Propulsion Science (2009) also offers a look into the previous scholarship on wormhole physics and if you really want to dig deep, there’s Matt Visser’s Lorentzian Wormholes: From Einstein to Hawking (American Institute of Physics, 1996). I wanted to talk wormholes with Marc Millis, who co-edited the Frontiers of Propulsion Science book with Eric Davis, but the tight schedule in Oak Ridge and Marc’s need to return to Ohio forced a delay.

mmillis

In any event, Millis has been working on space drives rather than wormholes, the former being ways of moving a spacecraft without rockets or sails. Is it possible to make something move without expelling any reaction mass (rockets) or in some way beaming momentum to it (lightsails)? We don’t know, but the topic gets us into the subject of inertial frames — frames of reference defined by the fact that the law of inertia holds within them, so that objects observed from this frame will resist changes to their velocity. Juggling balls on a train moving at a constant speed (and absent visual or sound cues), you could not determine whether the train was in motion or parked. The constant-velocity train is considered an inertial frame of reference.

Within the inertial frame, in other words, Newton’s laws of motion hold. An accelerating frame of reference is considered a non-inertial frame because the law of inertia is not maintained in it. If the conductor pulls the emergency brake on the train, you are pushed forward suddenly in this decelerating frame of reference. From the standpoint of the ground (an inertial frame), you aboard the train simply continue with your forward motion when the brake is applied.

We have no good answers on what causes an inertial frame to exist, an area where unsolved physics regarding the coupling of gravitation and inertia to other fundamental forces leave open the possibility that one could be used to manipulate the other. We’re at the early stages of such investigations, asking whether an inertial frame is an intrinsic property of space itself, or whether it somehow involves, as Ernst Mach believed, a relationship with all matter in the universe. That leaves us in the domain of thought experiments, which Millis illustrated in a series of slides that I hope he will discuss further in an article here.

Fusion’s Interstellar Prospects

Rob Swinney, who is the head of Project Icarus, used his time at TVIW to look at a subject that would seem to be far less theoretical than wormholes and space drives, but which still has defeated our best efforts at making it happen. The subject is fusion and how to drive a starship with it. The Daedalus design of the 1970s was based on inertial confinement fusion, using electron beams to ignite fusion in fuel pellets of deuterium and helium-3. Icarus is the ongoing attempt to re-think that early Daedalus work in light of advances in technology since.

But like Daedalus, Icarus will need to use fusion to push the starship to interstellar speeds. Robert Freeland and Andreas Hein, also active players in Icarus, were also in Oak Ridge, and although Andreas was involved with a different topic entirely (see yesterday’s post), Robert was able to update us on the current status of the Icarus work. He illustrated one possibility using Z-pinch methods that can confine a plasma to heat it to fusion conditions.

Three designs are still in play at Icarus, with the Z-pinch version (Freeland coined it ‘Firefly’ because of the intense glow of waste heat that would be generated) relying on the same Z-pinch phenomenon we see in lightning. The trick with Z-pinch is to get the plasma moving fast enough to create a pinch that is free of hydrodynamic instabilities, but Icarus is tracking ongoing work at the University of Washington on the matter. As to fuel, the team has abandoned deuterium/helium-3 in favor of deuterium/deuterium fusion, a choice that must flow from the problem of obtaining the helium-3, which Daedalus assumed would be mined at Jupiter.

Freeland described the Firefly design as having an exhaust velocity of 10,000 kilometers per second, with a 25 year acceleration period to reach cruise speed. The cost: $35 billion a year spread out over 15 years. I noted in Rob Swinney’s talk that the Icarus team is also designing interstellar precursor missions, with the idea of building a roadmap. All told, 35,000 hours of volunteer research are expected to go into this project (I believe Daedalus was 10,000), with the goal of not just reaching another star but decelerating at the target to allow close study.

icarus_pathfinder_vasimr_1l

Image: Artist’s conception of Icarus Pathfinder. Credit: Adrian Mann.

Let me also mention a design from the past that antedates Daedalus, which was begun in 1973. Brent Ziarnick is a major in the US Air Force who described the ARPA-funded work on nuclear pulse propulsion that grew into Orion, with work at General Atomics from 1958 to 1965. Orion was designed around the idea of setting off nuclear charges behind the spacecraft, which would be protected by an ablation shield and a shock absorber system to cushion the blasts.

We’ve discussed Orion often in these pages as a project that might have opened up the outer Solar System, and conceivably produced an interstellar prototype if Freeman Dyson’s 1968 paper on a long-haul Orion driven by fusion charges had been followed up. Ziarnick’s fascinating talk explained how the military had viewed Orion. Think of an enormous ‘battleship’ of a spacecraft that could house a nuclear deterrent in a place that Soviet weaponry couldn’t reach. At least, that was how some saw the Cold War possibilities in the early years of the 1960s.

The military was at this time looking at stretch goals that went way beyond the current state of the art in Project Mercury, and had considered systems like Dyna-Soar, an early spaceplane design. With a variety of manned space ideas in motion and nuclear thermal rocket engines under investigation, a strategic space base that would be invulnerable to a first strike won support all the way up the command chain to Thomas Power at the Strategic Air Command and Curtis LeMay, who was then Chief of Staff of the USAF. Ziarnick followed Orion’s budget fortunes as it ran into opposition from Robert McNamara and ultimately Harold Brown, who worked under McNamara as director of defense research and engineering from 1961 to 1965.

Orion would eventually be derailed by the Atmospheric Test Ban Treaty of 1963, but the idea still has its proponents as a way of pushing huge payloads to deep space. Ziarnick called Orion ‘Starfleet Deferred’ rather than ‘Starflight Denied,’ and noted the possibility of renewed testing of pulse propulsion without nuclear pulse units. The military lesson from Orion:

“The military is not against high tech and will support interstellar research if they can find a defense reason to justify it. We learn from Orion that junior officers can convince senior leaders, that operational commanders like revolutionary tech. Budget hawks distrust revolutionary tech. Interstellar development will be decided by political, international, defense and other concerns.”

Several other novel propulsion ideas, as well as a book signing event, will wrap up my coverage of the Tennessee Valley Interstellar Workshop tomorrow.

tzf_img_post