When it comes to Saturn, have you noticed what's been missing lately? Well, actually for the last two years. While the Cassini orbiter has had high-profile encounters with Titan, it has been in a high-inclination orbit that has meant no recent flybys of other Saturnian moons. All that has now changed as Cassini returned to the planet's equatorial plane this month, which means we can look forward to more interesting views like these mosaics of the planet's second largest moon Rhea. Image: Two mosaics of Saturn's icy moon Rhea, with constituent images taken about an hour and a half apart on February 9, 2015. Images taken using clear, green, infrared and ultraviolet spectral filters were combined to create these enhanced color views, which offer an expanded range of the colors visible to human eyes in order to highlight subtle color differences across Rhea's surface. The moon's surface is fairly uniform in natural color. Credit: JPL. The Rhea imagery comes from a flyby of the moon on...
An Alpha Centauri Bb Transit Search
Alpha Centauri continues to be a maddening and elusive subject for study. Two decades of radial velocity work on Centauri A and B have been able to constrain the possibilities -- we've learned that there are no gas giants larger than Jupiter in orbits within 2 AU of either of the stars. But lower mass planets remain a possibility, and in 2012 we had the announcement of a planet slightly more massive than Earth in a tight orbit around Centauri B. It was an occasion for celebration (see Lee Billings' essay Alpha Centauri and the New Astronomy for a glimpse of how that moment felt and how it fit into the larger world of exoplanet research). But the candidate world, Centauri Bb, remains controversial, and for good reason. The work involved radial velocity methods at a level of precision that pushed our instruments to the limit. Andrew LePage explored the issues in Happy Anniversary α Centauri Bb?, where the question-mark tells the tale. Here he discusses the instrumentation...
SETI Explores the Near-Infrared
This has been a week devoted to extraterrestrial technologies and the hope that, if they exist, we can find them. Large constructions like Dyson spheres, and associated activities like asteroid mining on the scale an advanced civilization might use to make them, all factor into the mix, and as we've seen, so do starships imagined in a wide variety of propulsion systems and designs. Dysonian SETI, as it is called, takes us into the realm of the hugely speculative, but hopes through sifting our abundant astronomical data to find evidence of distant engineering. This effort is visible in projects like the Glimpsing Heat from Alien Technologies (G-HAT) SETI program, which proceeds in the capable hands of Jason Wright and colleagues Steinn Sigurðsson and Matthew Povich at Penn State (see Wright's Glimpsing Heat from Alien Technologies essay in these pages as well as his AstroWright blog). For those wanting to follow up these ideas, an excellent introduction is the paper "Dysonian Approach...
Starship Detection: The K2 Perspective
'Classical' SETI, if I can use that term, is based on studying the electromagnetic spectrum primarily in the radio wavelengths thought most likely to be used for communication by an extraterrestrial civilization. SETI's optical component is largely focused on searching for signals intended as communication. What is now being called Dysonian SETI is a different approach, one based on gathering observational evidence that may already be in our archives, data that demonstrate the existence of extraterrestrial activity far beyond our capability. Just as a Dyson Sphere would reveal the workings of a civilization of Kardashev Type II -- producing something like ten billion times the energy of a Type I culture -- the detection of a starship would show us technology in action, even if the craft were, as Ulvi Yurtsever and Steven Wilkinson have speculated, a vehicle pushing up against light speed millions of light years away. As physicist Al Jackson has tackled starship detection in recent...
Our View of a Decelerating Magsail
Yesterday's post looked at the question of starship detection. But the paper by Ulvi Yurtsever and Steven Wilkinson that I discussed actually focused on a highly specific subset of such observations, the case of an artificial object moving at such high gamma factors that the ship's velocity was over 99 percent of the speed of light. It may be that such things become possible to sufficiently advanced civilizations, but if they do and we observe them, we will be doing something akin to what Richard Carrigan does when he looks for Dyson spheres. Hunting a relativistic starship between galaxies is a kind of interstellar archaeology. What I mean is that if any of the researchers now looking for observational data of advanced civilizations turn something up in, say, M31, that construct will be so far away from us in both space and time that we might well be studying the ruins of an ancient culture. I made this case not long ago in an essay called Distant Ruins for Aeon magazine. This is a...
Starship Observational Signatures
Now and again in relatively rarefied SETI discussions the topic of starship detection comes up. Specifically, if there were a starship moving through the interstellar medium in the general vicinity of our perch in the Orion Arm, would we be able to detect any sort of signature in our astronomical data? Centauri Dreams regular Al Jackson has looked into this for a variety of starship types (and discussed the matter at Starship Congress in 2013), and so has Gregory Benford, whose 2006 novelette "Bow Shock" describes the detection of an object whose synchrotron radiation fits the signature of the bow shock of a craft something like a Bussard ramjet. We also have a 1995 paper from Robert Zubrin on the spectral signatures of starships and, back in 1977, a JBIS paper by D. R. J. Viewing and colleagues on relativistic spacecraft detection. Various detection methods come to mind, but Al Jackson has pointed out that the simplest would be finding the signature of waste heat (see SETI: Starship...
White Dwarfs and Dyson Spheres
There is a wonderful moment in Larry Niven’s 1970 novel Ringworld when protagonist Louis Wu is first shown an image of an artificial ring completely encircling a star. These days the concept of a Dyson sphere is well established as a way for a civilization to capture as much energy as possible from the host star, but back then I had never heard of the concept. Dyson thought both a solid shell and a ring would be unstable and believed the best form for his concept was what he described as “...a loose collection or swarm of objects traveling on independent orbits around the star.” In that sense, Niven’s Ringworld wasn’t really Dysonian, but I found it staggering. What a place! An engineered ring the diameter of Earth’s orbit fully 1.6 million kilometers wide, giving a habitable inner surface equal to about three million Earth-sized planets. A broader backdrop for science fiction adventure could scarcely be imagined unless it were a full-blown Dyson sphere. And indeed, Ringworld became...
Large Exomoons Shown to Be Detectable
The search for sub-planetary scale features in other solar systems continues, with encouraging news from the Hunt for Exomoons with Kepler project. A moon around a distant exoplanet is a prize catch, but as we’ve also seen recently, scientists are weighing the possibilities in detecting exoplanetary ring systems (see Searching for Exoplanet Rings). Confirming either would be a major observational step, but exomoons carry the cachet of astrobiology. After all, a large moon around a gas giant in the habitable zone might well be a living world. David Kipping (Harvard University) and colleagues at HEK have released a new study that tackles the question of how detectable exomoons really are. Published online today by the Astrophysical Journal, the paper examines 41 Kepler Objects of Interest, bringing the total number of KOIs surveyed by HEK thus far up to 57. The paper demonstrates that the process is beginning to move out of the realm of computer simulations and assumption-laden theory...
Chariklo & Chiron: Centaurs with Possible Rings
You may be forgiven if you aren't familiar with the name Chariklo. Discovered in 1997, 10199 Chariklo is a 'centaur,' an outer system body with an orbit that moves between the orbits of Saturn and Uranus, just nudging the orbit of the latter. Its odd name (we're big on names and their derivations here) comes from a nymph who in Greek mythology was the wife of Chiron and daughter of Apollo. No centaur is larger than Chariklo (estimated diameter 250 kilometers), and until just the other day, no other centaur was known to have what Chariklo did: A system of rings. We've just learned, though, that the second largest centaur, 2060 Chiron, may have a set of rings of its own, although there are alternative ways of interpreting the data. Whether Chiron's rings are confirmed or not, what was once thought to be an unusual phenomenon, a feature of Saturn alone, is now turning out to be far more common, with rings known to orbit Jupiter, Uranus and Neptune as well as Chariklo. So we have...
Can We Find Exoplanets Using the Titius-Bode Relation?
The Titius-Bode law has always been a curiosity, one often attributed to little more than happenstance. But recently this numerological curiosity, which predicts that planets in a solar system appear with a certain ratio between their orbital periods, has been the subject of renewed investigation. Francois Graner (Ecole Normale Superieure, Paris) and Berengere Dubrulle (Observatoire Midi Pyrenees, Toulouse) revisited Titius-Bode in the 1990s, asking whether it actually flagged symmetry properties that most solar systems should exhibit. And now continuing work out of Australian National University and the University of Copenhagen has made predictions using a modified version of the law that can be tested against observation of known exoplanetary systems. So we need to refresh our memory on the formulation, which shows us a relationship that predicts planetary orbits. Take a sequence where each number is double the number that preceded it. Thus 0, 3, 6, 12 and so on. Add 4 to each of...
The Colors of Extraterrestrial Life
One of these days we'll have the instruments in place to examine light from a terrestrial-class world around another star. This opens up the possibility of identifying atmospheric gases like oxygen, ozone, carbon dioxide and methane. All of these can occur in an atmosphere in the absence of life, but if we find them existing simultaneously in great enough quantities, we will have detected a possible biosignature, for without life's activity to replenish them, these gases would recombine and leave us with a much less tantalizing atmospheric mix. But tackling planetary atmospheres for biosignatures is only one way to proceed. An interdisciplinary team led by Cornell University's Lisa Kaltenegger and Siddharth Hegde (Max Planck Institute for Astronomy), is examining life detection based on the characteristic tint of lifeforms. An alien organism covering large parts of the planet -- think forests, for example, on Earth -- would reflect light at particular wavelengths, light that could be...
The Search for ‘Chaotic Earths’
As we get the next generation of space-based telescopes into operation, one of our more significant problems is going to be knowing where to look. After all, once we've identified potentially interesting planets for follow-up with spectroscopic analysis of their atmospheres, we're still faced with the need to focus on the most likely targets. Telescope time is precious, and the ability to rule out planets so as to whittle down our list is a necessary skill to refine. On that score, Rory Barnes (University of Washington) and colleagues have weighed in with a particular type of planetary configuration we may want to avoid. Barnes is interested in solar systems where gravity plays a significant role in disrupting what might otherwise be a circular orbit in the habitable zone. Some of these effects may be relatively small, but if. over time, we elongate the orbit of an otherwise habitable planet by these small interactions, we can all but eliminate its chances for life. The particular...
Evidence Mounts for Ganymede’s Ocean
Yesterday's discussion of hydrothermal activity inside Saturn's moon Enceladus reminds us how much we can learn about what is inside an object by studying what is outside it. In Enceladus' case, Cassini's detection of tiny rock particles rich in silicon as the spacecraft arrived in the Saturnian system led to an investigation of how these grains were being produced inside Enceladus through interactions between water and minerals. If correctly interpreted, these data point to the first active hydrothermal system ever found beyond Earth. Now Ganymede swings into the spotlight, with work that is just as interesting. Joachim Saur and colleagues at the University of Cologne drew their data not from a spacecraft on the scene but from the Hubble Space Telescope, using Ganymede's own auroral activity as the investigative tool. Their work gives much greater credence to something that has been suspected since the 1970s: An ocean deep within the frozen crust of the moon. Image: NASA's Hubble...
Hydrothermal Activity in the ‘Broken Heart’ of Enceladus
Enceladus has been a magnet for investigation since 2005, when the Cassini spacecraft began to reveal the unusual activity at the moon's south pole, where we subsequently learned that geysers of water ice and vapor laden with salts and organic materials were spraying into space from deeply fractured terrain. Subsequent studies have homed in on what is now believed to be a 10-kilometer deep ocean beneath an ice shell 30 to 40 kilometers thick. Now we learn that evidence for hydrothermal activity -- water reacting with a rocky crust in a process that warms and saturates it with minerals -- has been found on Enceladus, drawing on a four-year analysis of Cassini data. The new paper, published in Nature, is one of two just out that paint a gripping picture of active processes on the moon. It uses computer simulations and laboratory experiments to make sense out of Cassini's early detection of silicon-rich rock particles flung into space by Enceladus' geysers. Researchers working on data...
Mission Updates: New Horizons, Hayabusa 2
While we wait for the Dawn spacecraft to come back around the lit side of Ceres as it continues a long period of orbital adjustment, let's check in on two other spacecraft with the potential for a big science return. New Horizons performed a 93-second thruster burn on March 10 that was the farthest burn from Earth of any spacecraft in history. We're now in the approach phase to Pluto/Charon and this was the first maneuver of that phase, designed to slow the spacecraft by a mere 1.14 meters per second. The New Horizons team describes this as 'a tap on the brakes' considering that the probe is moving at 14.5 kilometers per second. As this New Horizons news update informs us, yesterday's burn delayed arrival time at Pluto/Charon by 14 minutes, 30 seconds as the spacecraft's course was adjusted. New Horizons is now 149 million kilometers from Pluto -- in other words, 1 astronomical unit, or AU, meaning the spacecraft is the same distance from its target as the Earth is from the Sun. It...
The Fermi Question: No Paradox At All
We've talked often enough about the so-called 'Fermi paradox' in these pages, but Gregory Benford recently passed along a new paper from Robert H. Gray making the case that there is in fact no paradox, and that Fermi's intentions have been misunderstood. It's an interesting point, because as it turns out, Fermi himself never published anything on the subject of interstellar travel or the consequences if it proved possible. The famous lunch conversation at Los Alamos in 1950 when he asked 'Where is everybody' (or perhaps 'Where are they') has often been seen as a venue for Fermi to express his doubts about the existence of any extraterrestrial civilization, and the 'Fermi Paradox' has become a common trope of interstellar studies. Robert Gray (Gray Consulting, Chicago) believes this is a misunderstanding, and sorts through the aftermath of that particular event. It would be another 27 years before the term 'Fermi paradox' even appeared in print, inserted into a JBIS paper by D. G....
Searching for Exoplanet Rings
Not long ago we looked at the discovery of what appears to be a disk orbiting the huge gas giant J1407b (see Enormous Ring System Hints of Exomoons). The example of Saturn is one thing that makes us wonder whether rings might exist around exoplanets, but of course in our own Solar System we also have Jupiter, Uranus and Neptune as hosts of ring systems of different sizes. In the case of J1407b, we’re not strictly sure that the object is a planet. If it’s actually a brown dwarf, we might be observing a protoplanetary disk in a young system. I’m not surprised when it comes to looking for ring systems around exoplanets that David Kipping (Harvard-Smithsonian Center for Astrophysics) should be in the mix. Working with Jorge Zuluaga (University of Antioquia) and two of their students, Kipping is co-author of a paper discussing how we might identify what are now being called ‘exorings.’ As illustrated in the figure below, an exoplanet’s transit signature is a key, taking advantage of the...
Dawn Orbits Ceres
I spent the morning working on an interesting paper about detecting 'exorings' -- ring systems like Saturn's around exoplanets -- while switching back and forth to Twitter and various Web sources to follow events as the Dawn spacecraft became gravitationally captured by Ceres. I have problems with so-called 'multi-tasking,' which at least in my case means I do two things at once, performing each task less effectively than if I were tackling them separately. Fortunately, I have all weekend to tune up the exorings story, and I put it temporarily aside to work on Dawn's historic arrival. Congratulations to the entire Dawn team on the continuance of this splendid mission. We have much to look forward to as observations proceed and the orbit stabilizes. Similarly, we have the almost immediate prospect of following New Horizons in to Pluto/Charon, another case of a previously blurry object taking on breathtaking resolution as the days pass. The bounty of 2015 then opens into an uncertain...
Planet in a Quadruple Star System
Planets in multiple star systems intrigue us particularly when we try to imagine the view from the surface. Call it the 'Tatooine Effect,' made to order for visual effects specialists and cinematographers. But planets like these also raise interesting issues. Lewis Roberts (JPL) and colleagues have just published a new study of the 30 Ari system, demonstrating that it is a quadruple star system with a gas giant of about four times the mass of Jupiter in a 335 day orbit around its primary star. We already knew about the planet in the 30 Ari system. What's new is the discovery of the additional star. At 23 AU from the planet, the newly discovered fourth star would seem to be a factor in the orbital dynamics of the gas giant, but just what effects it has remain to be studied. The paper, which also reports the detection of a stellar companion to the exoplanet host system HD 2638, notes that 30 Ari is the second quadruple system known to host an exoplanet. And interestingly, both HD 2638...
Strategies for Life on Titan
Back in September of 1961, Isaac Asimov penned an essay in Fantasy & Science Fiction under the title "Not As We Know It," from which this startling passage: ...when we go out into space there may be more to meet us than we expect. I would look forward not only to our extra-terrestrial brothers who share life-as-we-know-it. I would hope also for an occasional cousin among the life-not-as-we-know-it possibilities. In fact, I think we ought to prefer our cousins. Competition may be keen, even overkeen, with our brothers, for we may well grasp at one another's planets; but there need only be friendship with our hot-world and cold-world cousins, for we dovetail neatly. Each stellar system might pleasantly support all the varieties, each on its own planet, and each planet useless to and undesired by any other variety. Asimov's idea, prompted by a monster movie excursion with his children, was to look at realistic ways that life much different from our own could emerge. Here he anticipated...