Centauri Dreams regular Nick Nielsen here tackles transhumanism, probing its philosophical underpinnings and its practical consequences as civilization spreads outward from the Solar System. In a sense, transhumanism is what humans have always done, the act of transcendence through technology being a continuing theme of our existence. But accelerating technologies demand answers about human freedom in the context of a species that will inevitably bifurcate as it takes to the stars. Think of the 'Cambrian explosion' as a model as we consider what is to come. The author's philosophy often takes him into mathematics (hence a digression on Georg Cantor and set theory), but the prolific Nielsen (Grand Strategy: The View from Oregon and Grand Strategy Annex) always has the long result in mind, a human future that grows and changes with us in a galactic diaspora and beyond. by J. N. Nielsen 0. Introduction: Synchronic and Diachronic Historiography 1. Planetary Constraints upon Civilization...
Into Plutonian Depths
The image of Pluto on the right -- an artist's impression, to be sure (credit: NASA, ESA and G. Bacon, STScI) -- suggests Ganymede to me more than Pluto, but we'll have to wait and see what New Horizons turns up as it continues to close on its target. It's worth thinking about how our views of this place have changed over time. The world found by Clyde Tombaugh seemed small enough when he found it, but a fraction of its light was actually coming from its yet smaller moon, which wouldn't be discovered until USNO astronomer James Christy nailed it in 1978. Gregory Benford depicted Pluto with a nitrogen sea in a 2006 novel called The Sunborn, one in which he explored the possibility of life at -185 degrees Celsius, the lifeforms themselves the result of an experiment by heliopause beings who drew energy from magnetic interactions far from the Sun. Even more speculative is Stephen Baxter's story "Goose Summer" (from the Vacuum Diagrams collection of 2001), in which Plutonian life...
LightSail Glitch: Hoping for a Reboot
The Planetary Society's LightSail won't stay in orbit long once its sail deploys, a victim of inexorable atmospheric drag. But we're all lucky that in un-deployed form -- as a CubeSat -- LightSail can maintain its orbit for about six months. Some of that extended period may be necessary given the problem the spacecraft has encountered: After returning a healthy stream of data packets over its first two days of operations, the solar sail mission has fallen silent. Jason Davis continues his reporting on LightSail, with the latest update on the communications problem now online. We learn that the suspected culprit for LightSail's silence is a simple software glitch. Everything else looked good when communications ceased, with power and temperature readings stable. Davis explains that during normal operations, LightSail transmits a telemetry beacon every 15 seconds. The Linux-based flight software writes data on each transmission to a .csv file, a spreadsheet-like record of ongoing...
Exoplanet Exploration Organization Proposed
We've recently looked at the role of small spacecraft, inspired in part by The Planetary Society's LightSail, a CubeSat-based sail mission that launched last week. It's interesting in that regard to consider small missions in the exoplanet realm. ExoplanetSat, for example, is a 3-unit CubeSat designed at MIT as a mission to discover Earth-sized exoplanets around nearby stars. Here the beauty of the CubeSat is obvious: The platform is low-cost, the development time is relatively short, and there are frequent launch opportunities. Up to 100 ExoplanetSats are planned. Pulling big benefits from small packages is not new, as the example of the Canadian MOST mission (Microvariability and Oscillations of STars) reminds us. MOST was the first mission dedicated to asteroseismology, to be followed by CoRoT (COnvection ROtation and planetary Transits) and then Kepler. Now we have a proposal for what is being called the United Quest for Exoplanets (UniQuE), which grows out of work performed by...
A Mass-Radius Relationship for ‘Sub-Neptunes’
The cascading numbers of exoplanet discoveries raise questions about how to interpret our data. In particular, what do we do about all those transit finds where we can work out a planet's radius and need to determine its mass? Andrew LePage returns to Centauri Dreams with a look at a new attempt to derive the relationship between mass and radius. Getting this right will be useful as we analyze statistical data to understand how planets form and evolve. LePage is the author of an excellent blog on exoplanetary science called Drew ex Machina, and a senior project scientist at Visidyne, Inc. specializing in the processing and analysis of remote sensing data. By Andrew LePage As anyone with even a passing interest in planetary studies can tell you, we are witnessing an age of planetary discovery unrivaled in the long history of astronomy. Over the last two decades, thousands of extrasolar planets have been discovered using a variety of techniques. The most successful of these to date in...
LightSail Aloft!
One of the joys of science fiction is the ability to enter into conjectured worlds at will, tweaking parameters here and there to see what happens. I remember talking a few years ago to Jay Lake, a fine writer especially of short stories who died far too young in 2014. Jay commented that while it was indeed wonderful to move between imagined worlds as a reader, it was even more wondrous to do so as a writer. I've mostly written non-fiction in my career, but the few times I've done short stories, I've experienced a bit of this 'world-building' sense of possibility. Even so, it's always striking how science and technology keep moving in ways that defy our expectations. Take yesterday's launch of The Planetary Society's crowd-funded LightSail, which went aloft thanks to the efforts of a United Launch Alliance Atlas V from Cape Canaveral. LightSail violates expectations on a number of fronts. For one thing, the crowd-funding thing, which is a consequence of an Internet era that science...
Enter the ‘Warm Titan’
Our definition of the habitable zone is water-based, focusing on planetary surfaces warm enough that liquid water can exist there. New work by Steven Benner (Foundation for Applied Molecular Evolution) and colleagues considers other kinds of habitable zones, specifically those supporting hydrocarbons, which can be liquids, solids or gases depending on the ambient temperature and pressure. Benner's work focuses on compounds called ethers that can link together to form polyethers, offering life a chance to emerge and adapt in hydrocarbon environments. Out of this comes the notion of 'warm Titans,' moons with hydrocarbon seas that are not made up of methane. We have no such worlds in our Solar System, and they needn't be moons of gas giants to fit the bill. Think of them, as this Astrobio.net news release does, as being oily Earths drenched in hydrocarbons like propane or octane. Although they do not appear in any genetic molecules on Earth, ethers may be the key to fill the function of...
Exoplanets: The Hunt for Circular Orbits
If you're looking for planets that may be habitable, eccentric orbits are a problem. Vary the orbit enough and the surface goes through extreme swings in temperature. In our own Solar System, planets tend to follow circular orbits. In fact, Mercury is the planet with the highest degree of eccentricity, while the other seven planets show a modest value of 0.04 (on a scale where 0 is a completely circular orbit -- Mercury's value is 0.21). But much of our work on exoplanets has revealed gas giant planets with a wide range of eccentricities, and we've even found one (HD 80606b) with an eccentricity of 0.927. As far as I know, this is the current record holder. These values have been measured using radial velocity techniques that most readily detect large planets close to their stars, although there is some evidence for high orbital eccentricities for smaller worlds. Get down into the range of Earth and 'super-Earth' planets, however, and the RV signal is tiny. But a new paper from...
Spacecoach on the Stage
I'm glad to see that Brian McConnell will be speaking at the International Space Development Conference in Toronto this week. McConnell, you'll recall, has been working with Centauri Dreams regular Alex Tolley on a model the duo call 'Spacecoach.' It's a crewed spacecraft using solar electric propulsion, one built around the idea of water as propellant. The beauty of the concept is that we normally treat water as 'dead weight' in spacecraft life support systems. It has a single use, critical but heavy and demanding a high toll in propellant. The spacecoach, on the other hand, can use the water it carries for radiation shielding and climate control within the vessel, while crew comfort is drastically enhanced in an environment where water is plentiful and space agriculture a serious option. Along with numerous other benefits that Brian discusses in his recent article A Stagecoach to the Stars, mission costs are sharply reduced by constructing a spaceship that is mostly water....
Doppler Worlds and M-Dwarf Planets
Finding small and possibly habitable worlds around M-dwarfs has already proven controversial, as we've seen in recent work on Gliese 581. The existence of Gl 581d, for example, is contested in some circles, but as Guillem Anglada-Escudé argues below, sound methodology turns up a robust signal for the world. Read on to learn why as he discusses the early successes of the Doppler technique and its relevance for future work. Dr. Anglada-Escudé is a physicist and astronomer who did his PhD work at the University of Barcelona on the Gaia/ESA mission, working on the mission simulator and data reduction prototype. His first serious observational venture, using astrometric techniques to detect exoplanets, was with Alan Boss and Alycia Weinberger during a postdoctoral period at the Carnegie Institution for Science. He began working on high-resolution spectroscopy for planet searches around M-stars during that time in collaboration with exoplanet pioneer R. Paul Butler. In a...
Sea Salt in Europa’s Dark Materials?
'Europa in a can' may be the clue to what's happening on Jupiter's most intriguing moon. Created by JPL's Kevin Hand and Robert Carlson, 'Europa in a can' is the nickname for a laboratory setup that mimics conditions on the surface of Europa. It's a micro-environment of extremes, as you would imagine. The temperature in the vacuum chamber is minus 173 degrees Celsius. Moreover, materials within are bombarded with an electron beam that simulates the effects of Jupiter's magnetic field. Ions and electrons strike Europa in a constant bath of radiation. What Hand and Carlson are trying to understand is the nature of the dark material that coats Europa's long fractures and much of the other terrain that is thought to be geologically young. The association with younger terrain would implicate materials that have welled up from within the moon, providing an interesting glimpse of what is assumed to be Europa's ocean. Previous studies have suggested that these discolorations could be...
SETI and Stellar Drift
It was natural enough that Richard Carrigan would come up with the model for what he called ‘Fermi bubbles,’ which I invoked in Monday’s post. A long-time researcher of the infrared sky, Carrigan (Fermi National Accelerator Laboratory, now retired) had mined data from the Infrared Astronomical Satellite (IRAS) in 2009 to mount a search for interesting sources that could be Dyson spheres, entire stars enclosed by a swarm of power stations, or conceivably wrapped entirely by a sphere of material presumably mined from the planetary population of the system. Carrigan’s work on infrared sources goes back well over a decade, involving not only data mining but theorizing about the nature of truly advanced civilizations. If we were to find a civilization transforming a galaxy by gradually building Dyson spheres to exploit all the energies of its stars, we would be witnessing the transformation from Kardashev Type II (a culture that uses all the power of its star) to Type III (a culture that...
SETI: Are ‘Fermi Bubbles’ Detectable?
I’m enough of a perfectionist that when I get something wrong, I can’t rest easy until I figure out how and why I missed the story. Such a case occurred in an article I wrote for Aeon Magazine called Distant Ruins. The article covered the rise of so-called ‘Dysonian SETI,’ which is adding an entirely new dimension to current radio and optical methods by looking into observational evidence for advanced civilizations in our abundant astronomical data. In the story, I homed in at one point on the work that Jason Wright and his colleagues Matthew Povich and Steinn Sigurðsson are doing with the Glimpsing Heat from Alien Technologies (G-HAT) project at Penn State. Keith Cooper went over the basics of this effort on Friday, putting his own spin on the group’s recent search of 100,000 galaxies. For more background, see Jason Wright’s Glimpsing Heat from Alien Technologies essay. I noted in the Aeon article that the G-HAT team was examining infrared data from the Wide-field Infrared Survey...
Project Dragonfly Design Competition Funded
Andreas Hein recently wrote up the Project Dragonfly design competition, which has been running as a Kickstarter project. Leveraging advances in miniaturization and focusing on laser-beamed lightsail technologies, Project Dragonfly aims to study the smallest possible spacecraft. From the Kickstarter announcement: Project Dragonfly builds upon the recent trend of miniaturization of space systems. Just a few decades ago, thousands of people were involved in developing the first satellite Sputnik. Today, a handful of university students are able to build a satellite with the same capability as Sputnik, which is much cheaper and weighs hundreds of times less than the first satellite. We simply think further. What could we do with the technologies in about 20-30 years from now? Would it be possible to build spacecraft that can go to the stars but are as small as today's picosatellites or even smaller? You can read about the competition in Andreas' post Project Dragonfly: Design...
SETI: The Black Hole Alternative
Our speculations about advanced civilizations invariably invoke Nikolai Kardashev’s scale, on which a Type III civilization is the most advanced, using the energy output of its entire galaxy. Given the age of our universe, a Type III has seemingly had time to emerge somewhere, yet a recent extensive survey shows no signs of them. All of this leads Keith Cooper to consider possible reasons for the lack, including societies that use their energies in ways other than we are imagining and cultures whose greatest interest is less in stars than in their galaxy’s black holes. Keith is an old friend of Centauri Dreams, with whom I’ve conducted published dialogues on interstellar issues in the past (look for these to begin again). A freelance science journalist and contributing editor to Astronomy Now, Keith's ideas in the essay below help to illuminate the new forms of SETI now emerging as we try to puzzle out the enigma of Kardashev Type III. By Keith Cooper It’s not often that SETI turns...
A New Look Inside Enceladus
We can hope that plumes like those found emanating from the south pole of Enceladus happen on other icy worlds. There have been hints of plumes at Europa but they've proven elusive to pin down. However, we're learning a great deal about the water inside Enceladus through Cassini flybys, using models based on mass spectrometry data the spacecraft has gained from the ice grains and gases in the moon's plumes. A similar approach on other icy moons, if possible, could save us from having to drill through kilometers of ice. What Christopher Glein (Carnegie Institution for Science) and team have done is to construct a chemical model that uses the Cassini observational data to determine the pH of the Enceladan ocean. It's an important reading because pH tells us how acidic the water is, which gives us a look into the geochemical processes occurring inside the moon. What the new work shows is that the plume is salty, with an alkaline pH of about 11 or 12. This Carnegie Institution news...
Thoughts on Voyager’s Closest Stars
Not long ago I looked at the future of the Voyager spacecraft and noted a possibility once suggested by Carl Sagan. Give the Voyagers one last 'empty the tank' burn and both could be put on a trajectory that would take them near, if not through, another star's system (see Voyager to a Star). It would be little more than a symbolic act, for even with heroic measures to conserve power, neither Voyager will be able to communicate past the mid-2020s. With a little luck, perhaps 2030. So we would be sending two spacecraft off to a star as a final act, turning them into markers, or monuments, that show humans are capable of producing something that will eventually reach (or come close to) another stellar system. Given their current trajectories, each Voyager passes interestingly close to another star in about 40,000 years, or roughly the amount of time since the extinction of homo neanderthalensis. The mere act of relating objects created by our species and launched in 1977 to time frames...
Changing Conditions on 55 Cancri e
Roughly twice the radius and eight times as massive as Earth, 55 Cancri e is a ‘super-Earth’ in the interesting five-planet system some 41 light years away in the constellation Cancer. No habitable conditions here, at least not for anything remotely like the kind of life we understand: 55 Cancri e orbits its G-class primary every 18 hours (55 Cancri is actually a binary, accompanied by a small red dwarf at a separation of 1000 AU). The closest super-Earth we’ve yet found, this is a tidally locked world that, helpfully for our purposes, transits its host. What we find in a just announced study of the planet’s thermal emissions out of the University of Cambridge is an almost threefold change in temperature over a two year period. Although we’ve done it before with gas giant atmospheres, this is the first time any variability in atmosphere has been observed on a rocky planet outside our own Solar System. No other super-Earth has yet given us signs of possible surface activity, and...
A Stagecoach to the Stars
Imagine the kind of spaceship we'll need as we begin to expand the human presence into the nearby Solar System. We'd like something completely reusable, a vessel able to carry people in relative comfort everywhere from Mars to Venus, and perhaps as far out as the asteroid belt, where tempting Ceres awaits. Capable of refueling using in situ resources, these are ships not crafted for a single, specific mission but able to operate on demand without entering a planetary atmosphere. Brian McConnell, working with Centauri Dreams regular Alex Tolley, has been thinking about just such a ship for some time now. A software/electrical engineer, pilot and technology entrepreneur based in San Francisco, Brian here explains the concept he and Alex have come up with, one that Alex treated in a previous entry in these pages. The advantages of their 'spacecoach' are legion and Brian also offers a sound way to begin testing the concept. The author can be reached at bsmcconnell@gmail.com. by Brian...