Science fiction has always had its share of Earthside dystopias, but starflight's allure has persisted, despite the dark scrutiny of space travel in the works of writers like J. G. Ballard. But what happens if we develop the technologies to go to the stars and find the journey isn't worth it? Gregory Benford recently reviewed a novel that asks these questions and more, Kim Stanley Robinson's Aurora (Orbit Books, 2015). A society that reaches the Moon and then turns away from it may well prompt questions on how it would react to the first interstellar expedition. Benford, an award-winning novelist, has explored star travel in works like the six novels of the Galactic Center Saga and, most recently, in the tightly connected Bowl of Heaven and Shipstar. His review is a revised and greatly expanded version of an essay that first ran in Nature. by Gregory Benford Human starflight yawns as a vast prospect, one many think impossible. To arrive in a single lifetime demands high speeds...
Reddish Arcs on Saturn’s Moon Tethys
Looking for a good science fictional link to Saturn's moon Tethys (you'll see why in a moment), I came up short until I recalled Harry Bates' story 'A Matter of Size.' First appearing in the April, 1934 issue of Astounding Stories, the novelette tells the breathless tale of giant humanoid beings who live on Tethys, the descendants of a long lost Earth civilization, and their micro-scale counterparts, who keep science alive and kidnap earthmen to use as breeding stock. Poor Tethys, it deserves better at the hand of science fiction authors, though I do note that Healy and McComas incorporated the story in their Adventures in Time and Space (1946), and to be fair, its manic humor includes a sinister 'marriage machine,' surely a science fiction first, and a device calculated to strike terror in the hearts of young readers in Bates' era. If you know of more respectable appearances of Tethys in science fiction, let me know. Meanwhile, the actual moon is starting to get intriguing. Just...
New Horizons: Thoughts on Looking Back
The New Horizons imagery has been breathtaking, and never more so than in the image below. Here we're seeing Pluto seven hours after the July 14 closest approach, looking back at Pluto as it occults the Sun. The backlit atmosphere shows us layers of haze reaching 130 kilometers above the surface. Image: Pluto sends a breathtaking farewell to New Horizons. Backlit by the sun, Pluto's atmosphere rings its silhouette like a luminous halo in this image taken around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 2 million kilometers from Pluto and shows structures as small as 19 kilometers across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame. Credit: NASA/JHUAPL/SwRI. Alan Stern, principal investigator for New Horizons, speaks of having his jaw on the ground when he saw our first image of an atmosphere in the Kuiper Belt, and for good reason. We've known that Pluto had some kind of...
EmDrive Back in the News
Martin Tajmar's presentation at the American Institute of Aeronautics and Astronautics' Propulsion and Energy Forum and Exposition in Orlando yesterday has been getting plenty of press. Tajmar is looking at the device now commonly called an EmDrive, studied by Sonny White's team at Eagleworks (Johnson Space Center) and advocated by Roger Shawyer, Guido Fetta and Chinese experimenters as a way of producing thrust in a way that seemingly violates conservation of momentum. Tajmar (Dresden University of Technology) offers a paper entitled "Direct Thrust Measurements of an EmDrive and Evaluation of Possible Side-Effects" in his presentation on apparent thrust produced by the test device. As he told WIRED (which announced that The 'impossible' EmDrive could reach Pluto in 18 months), the current work will not close the story. From the paper itself: The nature of the thrusts observed is still unclear… Our test campaign can not confirm or refute the claims of the EmDrive but intends...
Searching for Extraterrestrial Life and Intelligence: Knowable and Unknowable
We recently looked at the $100 million infusion into the SETI effort by Yuri Milner, with backing by major figures in the field. When I'm considering SETI developments, I always look to Michael Michaud, whose judicious perspective in his book Contact with Alien Civilizations (Copernicus, 2007) remains a touchstone. He served in senior international science and technology positions with the U.S. State Department and two American embassies and acted as chairman of working groups at the International Academy of Astronautics that discuss SETI issues, in addition to publishing numerous articles and papers on the implications of contact. Michaud recently addressed the Astrobiology Science Conference 2015 (AbSciCon2015) in Chicago in mid-June, more than a month before the Breakthrough Initiatives announcement, and touched on many of the relevant themes. What follows is an essay drawn from that talk but expanded with new material and references. What if a very advanced technology is...
Earth 2.0: Still Looking
I've come to dislike the term 'Earth 2.0.' It's not so much the idea of a second Earth as the use of 2.0, which in our technological era invariably recalls software updates. Windows 2.0 was better than Windows 1.0, but Windows 3.0 was the one that really took off -- the idea here is that progressive iterations improve the product. I'd rather see us use 'Earth 2' than 'Earth 2.0,' for the latter implies a new and improved Earth, and I'm not sure just what that would be. Speculating about that is, I suppose, a key activity of philosophers. But Earth 2.0 has stuck as a way of designating a planet much like our own. Here too we have to be careful. A planet with liquid water on at least parts of its surface might exist around a red dwarf, packed into a tidally-locked orbit and divided between a frigid night side and a day side with, perhaps, only a few zones where life might flourish. It's not Earth 2.0 because it has a star that never moves in its sky and its susceptibility to solar...
New Horizons: New Mountains, Pluto’s Moons
We've already had the pleasure of naming features on Pluto, at least informally, highlighted by the moment when the heart-shaped area revealed by New Horizons was named Tombaugh Regio, after the world's discoverer. The fact that two of Clyde Tombaugh's children were in the audience during the news briefing where this occurred made it all the more powerful. Now we are turning to smaller features, as witness the mountain range near the southwest margin of Tombaugh Regio, viewed by New Horizons from a distance of 77,000 kilometers on July 20. Image: What a glorious view on what had previously been nothing more than a barely resolved dot. This is the region of Tombaugh Regio containing a range of mountains evidently less elevated than those previously seen near Pluto's equator (see First Post-Flyby Imager). Features as small as one kilometers across are visible in this image. Credit: NASA/JHUAPL/SWRI. The mountains in the equatorial region -- now known as Norgay Montes, after sherpa...
Ernst Stuhlinger: Ion Propulsion to Mars
If you're a Centauri Dreams regular, you're familiar with Adam Crowl, an Australian polymath who is deeply involved in the ongoing Project Icarus starship design study. Adam maintains a blog called Crowlspace where interesting and innovative ideas emerge, some of them related to earlier work that has been largely forgotten in our era. A recent post that caught my eye was on Ernst Stuhlinger's 'umbrella ship,' a kind of spacecraft that, when introduced to the world on Walt Disney's 1957 TV show Mars and Beyond, surely surprised most viewers. The umbrella ship, as Adam notes, looks nothing like what readers of the famous space series in Collier's (1952-1954) had come to associate with manned travel to other worlds. Wernher von Braun was then championing massive rockets to be engaged in the exploration of Mars, an exploratory operation that would send a fleet of vessels to the Red Planet. Unlike tiny capsules of the kind we used to reach Earth orbit and explore the Moon, these would be...
A $100 Million Infusion for SETI Research
SETI received a much needed boost this morning as Russian entrepreneur Yuri Milner, along with physicist Stephen Hawking and a panel including Frank Drake, Ann Druyan, Martin Rees and Geoff Marcy announced a $100 million pair of initiatives to reinvigorate the search. The first of these, Breakthrough Listen, dramatically upgrades existing search methods, while Breakthrough Message will fund an international competition to create the kind of messages we might one day send to other stars, although the intention is also to provoke the necessary discussion and debate to decide the question of whether such messages should be sent in the first place. With $100 million to work with, SETI suddenly finds itself newly affluent, with significant access to two of the world's largest telescopes -- the 100-meter Green Bank instrument in West Virginia and the 64-meter Parkes Telescope in New South Wales. The funding will also allow the Automated Planet Finder at Lick Observatory to search at...
Small Interstellar Probes, Riding Laser Beams – The Project Dragonfly Design Competition Workshop
Today we look beyond Pluto/Charon toward possible ways of getting a payload to another star. Centauri Dreams readers are familiar with the pioneering work of Robert Forward in developing concepts for large-scale laser-beamed missions to Alpha Centauri and other destinations. But what if we go smaller, much smaller? Project Dragonfly, in progress at the Initiative for Interstellar Studies, proposes to explore this space, and as Andreas Hein explains below, it was recently examined in a workshop giving student teams a chance to present their ideas. A familiar figure in these pages, Andreas received his master's degree in aerospace engineering from the Technical University of Munich and is now working on a PhD there in the area of space systems engineering, having conducted part of his research at MIT. by Andreas M. Hein The Project Dragonfly Design Competition, organized by the Initiative for Interstellar Studies (i4is) was concluded on the 3rd of July in the rooms of the British...
Unusual Charon Closeup
The latest view of Charon shows us a 390-kilometer strip of Pluto's largest moon with a unique feature, clearly visible below. We are looking at what Jeff Moore (leader of the New Horizons Geology, Geophysics and Imaging team, calls "a large mountain sitting in a moat." Moore is the first to admit that the scenario has geologists stumped. Image: This new image of an area on Pluto's largest moon Charon has a captivating feature -- a depression with a peak in the middle, shown here in the upper left corner of the inset. The image shows an area approximately 390 kilometers from top to bottom, including few visible craters. Credit: NASA-JHUAPL-SwRI. This view of Charon was taken at approximately 0630 EDT (1030 UTC) on July 14, 2015, about 1.5 hours before closest approach to Pluto, at a range of 79,000 kilometers. Again, notice the lack of craters here, reinforcing what we're learning about Charon's relatively young surface. I know we were all curious about Charon from the outset, but I...
First Post-Flyby Pluto Imagery
I'm on the road and don't have a lot of time for writing, but I want to go ahead and get these new Pluto images up. They're now available on the NASA site, and were introduced at the news conference at JHU/APL that just concluded. I'll also quote just a bit of the news release for each photo. New close-up images of a region near Pluto's equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building, says Jeff Moore of New Horizons' Geology, Geophysics and Imaging Team (GGI). That suggests the close-up region, which covers less than one percent of Pluto's surface, may still be geologically active today. This one I mis-typed in my Twitter coverage for those who were following it, but the correct number is 100 million years....
Pluto: Encounter and Aftermath
Exoplanet hunter Greg Laughlin (UC-Santa Cruz), who could make a living as a poet (if it were possible to make a living as a poet) wrote recently of his hope for a Pluto image " that will become a touchstone, a visual shorthand for distance, isolation, frigidity and exile." We haven't seen that one yet, but I suspect we will with one of the images we're still to receive showing New Horizons' view of a receding crescent Pluto again being folded into the deep. Last night's reacquisition of the New Horizons' signal sets us up for many weeks of data return, and provides a triumphant exclamation point on the flyby. Our spacecraft punched right through the orbital plane of Pluto's system and emerged unscathed. The joy and festivity apparent on those actually at JHU/APL and the wild and celebratory conversations on social media bring home how popular this diminutive spacecraft has become. What an accomplishment, and even now I'm wondering what advances in technology could do in an outer...
Closest Approach!
Closest approach for New Horizons was at 0749:57 EDT (1149:57 UTC), with closest approach to Charon at about 0806 EDT. Mission operations manager Alice Bowman told the media briefing that we arrived at Pluto 72 seconds early and 70 kilometers closer than the aiming point, all of which was well within mission specs. Nice work. I've found Twitter the best place to keep up, along with NASA TV for the media briefings. The #PlutoFlyby hashtag has been so active that it's sometimes hard to read the messages, a heartening demonstration of the powerful sentiment this mission invokes. I also track @New Horizons2015, @NASANewHorizons, @AlanStern and, of course, @elakdawalla -- Emily Lakdawalla's work has been definitive. The Twitterverse has been exploding. And here is the latest image, showing 4 kilometers per pixel, about 1000 times higher than Hubble can provide. Much better still to come. Here we're sixteen hours from closest approach, at a distance of 766,000 kilometers. Note the varying...
New Horizons Countdown
We're under the 24 hour mark for the Pluto flyby. NASA will offer a news briefing for New Horizons (check NASA TV), covering mission status and what to expect during flyby, at 1030 EDT (1430 UTC) today, a schedule change that moves the time up by half an hour. On Tuesday morning, the agency will present a live program called Arrival at Pluto Countdown starting at 0730 (1130 UTC). Remember that closest approach to Pluto is scheduled to occur at approximately 0749 (1149 UTC) on Tuesday, when the spacecraft comes within 12,500 kilometers of the surface. Gathering data, the spacecraft will be out of communication for much of that day. Image: Pluto as seen from New Horizons on July 11, 2015. Credit: NASA/JHUAPL/SWRI You can check NASA's television coverage and media activities here, but I'll also send you to Emily Lakdawalla's page at The Planetary Society, where the indefatigable reporter has gathered in one place everything known about the schedule and other sources of information....
Charon: A Rugged, Cratered Surface
A chasm in Charon's southern hemisphere turns out to be longer and deeper than Earth's Grand Canyon, says William McKinnon (Washington University, St. Louis), deputy lead scientist with New Horizon's Geology and Geophysics investigation team. "This is the first clear evidence of faulting and surface disruption on Charon. New Horizons has transformed our view of this distant moon from a nearly featureless ball of ice to a world displaying all kinds of geologic activity." Image: Chasms, craters, and a dark north polar region are revealed in this image of Pluto's largest moon Charon taken by New Horizons on July 11, 2015. Credit: NASA/JHUAPL/SWRI. The most prominent crater, near Charon's south pole, is almost 100 kilometers across, and evidently the result of a geologically recent impact. This NASA news release adds that the darkness of the crater floor may be the result of a different kind of icy material being exposed, less reflective than the ices on the surface. Another possibility:...
Last Look at Pluto’s ‘Far Side’
The side of Pluto that always faces its large moon Charon is the side that New Horizons won't see when it makes its close flyby on July 14. That makes the image below what principal investigator Alan Stern is calling "the last, best look that anyone will have of Pluto's far side for decades to come." Image: New Horizons' last look at Pluto's Charon-facing hemisphere reveals intriguing geologic details that are of keen interest to mission scientists. This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. Four dark spots seem to be connected to the dark belt in Pluto's equatorial region, their fairly regular spacing a source of considerable curiosity. The large areas are estimated to...
New Horizons: Detecting Geology
Pluto's surface is beginning to be revealed, with the first signs of geological features, as principal investigator Alan Stern explains: "Among the structures tentatively identified in this new image are what appear to be polygonal features; a complex band of terrain stretching east-northeast across the planet, approximately 1,000 miles long; and a complex region where bright terrains meet the dark terrains of the whale. After nine and a half years in flight, Pluto is well worth the wait." Image: Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million kilometers) away. At this range, Pluto is beginning to reveal the first signs of discrete geologic features. This image views the side of Pluto that always faces its largest moon, Charon, and includes the so-called "tail" of the dark whale-shaped feature along its equator. (The immense, bright feature shaped like a heart had rotated from view when this...
New Horizons: Flyby Schedule, Images
New Horizons makes its closest approach to Pluto, at approximately 12,500 kilometers above the surface, at 0749 EDT (1149 UTC) on Tuesday July 14. Be aware that for much of that day, we'll be out of communication with the spacecraft while it's busy gathering data. About 2102 EDT (0102 UTC on the 15th), we should receive a confirmation of a successful flyby -- the spacecraft is scheduled to send a preprogrammed signal that it has survived the close approach. Then the data flow begins and will continue for months. NASA offers the schedule for the flyby here, with information on NASA TV coverage. We should be looking at close-up images of Pluto and hearing early reactions from the science team by mid-afternoon of Wednesday the 15th. And of course it will be possible to follow the mission on Facebook or on Twitter (also #PlutoFlyby). The nail-biting time will be the wait on the 14th for the signal announcing a successful transit of the system. It doesn't take a large object to silence a...
Detection of Pebbles in a Circumstellar Disk
Not long ago we looked at a new paper from Alan Boss that modeled interactions in young protoplanetary disks (A Disruptive Pathway for Planet Formation). The idea here is that as dust grains and larger objects bump into each other on the way to forming planetesimals, a mechanism must exist to keep them from spiraling into their star. Boss' models show explosive phases in young stars that lead to gravitational instabilities of the sort needed to scatter these small objects outward and preserve their prospects for forming into planetesimals, and perhaps one day, planets. Watching infant solar systems form is akin to studying embryology in animal species, a chance to understand the myriad interactions that affect growth and set it in particular directions. Now we have work out of the University of St. Andrews, recently presented at the National Astronomy Meeting in Llandudno, Wales, that announces the discovery of a ring of small rocks circling the star DG Tauri, a 2.5 million year old...