I like the theme of the just announced 2016 iteration of the Tennessee Valley Interstellar Workshop. Set in Chattanooga, TN, the meeting will convene at a local landmark, the Chattanooga Choo-Choo Hotel, which is actually built around the old railroad station made famous in the Glenn Miller tune of the same name. What better way to describe the upcoming event than what the group has chosen: "From Iron Horse to Worldship: Becoming an Interstellar Civilization." The Chattanooga event follows two previous meetings in Oak Ridge and one in Huntsville, AL, all of which I've had the pleasure of attending. The level of engagement I've found at TVIW has made all the meetings a success, beginning with the first, in Oak Ridge, back in 2011. That one sticks in my mind because of the intense fog that hung over the mountains as I drove in the evening before. The discussions and presentations were stimulating throughout, with an emphasis on more engagement with audience members than in a formal...
Near-Term Missions: What the Future Holds
Discussing the state of space mission planning recently with Centauri Dreams contributor Ashley Baldwin, I mentioned my concerns about follow-up missions to the outer planets once New Horizons has done its job at Pluto/Charon. No one is as plugged into mission concepts as Dr. Baldwin, and as he discussed what's coming up both in exoplanet research as well as future planetary missions, I realized we needed to pull it all together in a single place. What follows is Ashley's look at what's coming down the road in exoplanetary research as well as planetary investigation in our own Solar System, an overview I hope you'll find as useful as I have. Dr. Baldwin is a consultant psychiatrist at the 5 Boroughs Partnership NHS Trust (Warrington, UK) and a former lecturer at Liverpool and Manchester Universities. He is also, as his latest essay makes clear, a man with a passion for what we can do in space. by Ashley Baldwin We've come a long way since the discovery of the first "conventional"...
Enter ‘Galactic Archaeology’
I've used the term 'interstellar archaeology' enough for readers to know that I'm talking about new forms of SETI that look for technological civilizations through their artifacts, as perhaps discoverable in astronomical data. But there is another kind of star-based archaeology that is specifically invoked by the scientists behind GALAH, as becomes visible when you unpack the acronym -- Galactic Archaeology with HERMES. A new $13 million instrument on the Anglo-Australian Telescope at Siding Spring Observatory, HERMES is a high resolution spectrograph that is about to be put to work. Image: I can't resist running this beautiful 1899 photograph of M31, then known as the Great Andromeda Nebula, when talking about our evolving conception of how galaxies form. Credit: Isaac Roberts (d. 1904), A Selection of Photographs of Stars, Star-clusters and Nebulae, Volume II, The Universal Press, London, 1899. Via Wikimedia Commons. And what an instrument HERMES is, capable of providing spectra in...
Ganymede Bulge: Evidence for Its Ocean?
What to make of the latest news about Ganymede, which seems to have a bulge of considerable size on its equator? William McKinnon (Washington University, St. Louis) and Paul Schenk (Lunar and Planetary Institute) have been examining old images of the Jovian moon taken by the Voyager spacecraft back in the 1970s, along with later imagery from the Galileo mission, in the process of global mapping. The duo discovered the striking feature that Schenk described on March 20 at the 46th Lunar and Planetary Science Conference in Texas. Says McKinnon: "We were basically very surprised. It's like looking at old art or an old sculpture. We looked at old images of Ganymede taken by the Voyager spacecraft in the 1970s that had been completely overlooked, an enormous ice plateau, hundreds of miles across and a couple miles high… It's like somebody came to you and said, 'I have found a thousand mile wide plateau in Australia that was six miles high.' You'd probably think they were out of...
In Search of Colliding Stars
How often do two stars collide? When you think about the odds here, the likelihood of stellar collisions seems remote. You can visualize the distance between the stars in our galaxy using a method that Rich Terrile came up with at the Jet Propulsion Laboratory. The average box of salt that you might buy at the grocery store holds on the order of five million grains of salt. Two hundred boxes of salt, then, make a billion grains, while 20,000 boxes give us 100 billion. That’s now considered a low estimate of the number of stars in our galaxy, which these days tends to be cited at about 200 billion, but let’s go with the low figure because it’s still mind-boggling. So figure you have 20,000 boxes of salt and you spread the grains out to mimic the actual separation of stars in the part of the galaxy we live in. Each grain of salt would have to be eleven kilometers away from any of its neighbors. These are considerable distances, to say the least, but of course there are places in the...
Puzzling Out the Perytons
Recently we looked at Fast Radio Bursts (FRBs) and the ongoing effort to identify their source (see Fast Radio Bursts: SETI Implications?) Publication of that piece brought a call from my friend James Benford, a plasma physicist who is CEO of Microwave Sciences. Jim noticed that the article also talked about a different kind of signal dubbed 'perytons,' analyzed in a 2011 paper by Burke-Spolaor and colleagues. Detected at the Parkes radio telescope, as were all but one of the FRBs, perytons remain a mystery. As described in the essay below, Jim's recent trip to Australia gave him the opportunity to discuss the peryton question with key players in the radio astronomy community there. He has a theory about what causes these odd signals that is a bit closer to home than some of our speculations on the separate Fast Radio Burst question, and as he explains, we'll soon know one way or another if he's right. by James Benford A few weeks ago I visited Swinburne University in Melbourne...
Migratory Jupiter: A Theory of Gas Giant Formation
An interesting model of planetary formation suggests that the architecture of our Solar System owes much to the effects of the giant planets as they migrated through the protoplanetary disk. Frédéric Masset (Universidad Nacional Autónoma de México) and colleagues go so far as to speculate that planetary embryos in orbits near Mars and the asteroid belt may have migrated outwards, depleting the region of materials that would become the cores of Jupiter and Saturn. The key is the heat an embryonic planet generates in the protoplanetary disk. Writing in Nature, the authors describe computations that model what happens to the rocky cores that will become gas giants. Tidal forces affecting planets in the protoplanetary disk have been thought to cause them to lose angular momentum, making their orbits gradually decay. The migration in this case should be inwards toward the star. But the researchers' model takes heat generated by material impacting onto the...
Habitable Worlds on Circumbinary Orbits?
Before I get into some NASA-funded exoplanet work that grew out of a study of the binary nature of Pluto and Charon, I want to mention that NASA TV will air an event of exoplanet interest on Tuesday the 7th, from 1700 to 1800 UTC. A panel of experts will be discussing the search for water and habitable planets, presenting recent discoveries of water and organics in our own system and relating them to the search for Earth-like worlds around other stars. NASA streaming video, along with schedules and other information, can be found here. As to that Pluto/Charon work, it actually took Ben Bromley (University of Utah) and Scott Kenyon (Smithsonian Astrophysical Observatory) much deeper into space when they began relating it to the formation of planets in circumbinary orbits around binary stars. These are planets that orbit both stars rather than one of the two. In other words, the work, funded by NASA’s Outer Planets Program, has examined the familiar ‘Tatooine’ scenario from Star Wars,...
Fast Radio Bursts: SETI Implications?
With SETI on my mind after last week's series on Dysonian methods, it seems a good time to discuss Fast Radio Bursts, which have become prominent this week following the appearance of a new paper. A New Scientist piece titled Is this ET? Mystery of strange radio bursts from space is also circulating, pointing out that these powerful bursts of radio waves lasting for milliseconds, each covering a broad range of radio frequencies, are still unexplained, and that they seem to follow a mathematical pattern. Image: The 64-metre Parkes radio telescope in New South Wales (Australia), where Fast Radio Bursts of unknown origin have been detected. Credit: CSIRO Parkes Observatory. Eleven bursts have been detected so far, dating back to 2001. The paper, by Michael Hippke (Institute for Data Analysis, Neukirchen-Vluyn, Germany), Wilfried Domainko (Max-Planck-Institut fur Kernphysik, Heidelberg) and John Learned (University of Hawaii, Manoa), points out that the pulses have dispersion measures...
A Fresh Look at Rhea
When it comes to Saturn, have you noticed what's been missing lately? Well, actually for the last two years. While the Cassini orbiter has had high-profile encounters with Titan, it has been in a high-inclination orbit that has meant no recent flybys of other Saturnian moons. All that has now changed as Cassini returned to the planet's equatorial plane this month, which means we can look forward to more interesting views like these mosaics of the planet's second largest moon Rhea. Image: Two mosaics of Saturn's icy moon Rhea, with constituent images taken about an hour and a half apart on February 9, 2015. Images taken using clear, green, infrared and ultraviolet spectral filters were combined to create these enhanced color views, which offer an expanded range of the colors visible to human eyes in order to highlight subtle color differences across Rhea's surface. The moon's surface is fairly uniform in natural color. Credit: JPL. The Rhea imagery comes from a flyby of the moon on...
An Alpha Centauri Bb Transit Search
Alpha Centauri continues to be a maddening and elusive subject for study. Two decades of radial velocity work on Centauri A and B have been able to constrain the possibilities -- we've learned that there are no gas giants larger than Jupiter in orbits within 2 AU of either of the stars. But lower mass planets remain a possibility, and in 2012 we had the announcement of a planet slightly more massive than Earth in a tight orbit around Centauri B. It was an occasion for celebration (see Lee Billings' essay Alpha Centauri and the New Astronomy for a glimpse of how that moment felt and how it fit into the larger world of exoplanet research). But the candidate world, Centauri Bb, remains controversial, and for good reason. The work involved radial velocity methods at a level of precision that pushed our instruments to the limit. Andrew LePage explored the issues in Happy Anniversary α Centauri Bb?, where the question-mark tells the tale. Here he discusses the instrumentation...
SETI Explores the Near-Infrared
This has been a week devoted to extraterrestrial technologies and the hope that, if they exist, we can find them. Large constructions like Dyson spheres, and associated activities like asteroid mining on the scale an advanced civilization might use to make them, all factor into the mix, and as we've seen, so do starships imagined in a wide variety of propulsion systems and designs. Dysonian SETI, as it is called, takes us into the realm of the hugely speculative, but hopes through sifting our abundant astronomical data to find evidence of distant engineering. This effort is visible in projects like the Glimpsing Heat from Alien Technologies (G-HAT) SETI program, which proceeds in the capable hands of Jason Wright and colleagues Steinn Sigurðsson and Matthew Povich at Penn State (see Wright's Glimpsing Heat from Alien Technologies essay in these pages as well as his AstroWright blog). For those wanting to follow up these ideas, an excellent introduction is the paper "Dysonian Approach...
Starship Detection: The K2 Perspective
'Classical' SETI, if I can use that term, is based on studying the electromagnetic spectrum primarily in the radio wavelengths thought most likely to be used for communication by an extraterrestrial civilization. SETI's optical component is largely focused on searching for signals intended as communication. What is now being called Dysonian SETI is a different approach, one based on gathering observational evidence that may already be in our archives, data that demonstrate the existence of extraterrestrial activity far beyond our capability. Just as a Dyson Sphere would reveal the workings of a civilization of Kardashev Type II -- producing something like ten billion times the energy of a Type I culture -- the detection of a starship would show us technology in action, even if the craft were, as Ulvi Yurtsever and Steven Wilkinson have speculated, a vehicle pushing up against light speed millions of light years away. As physicist Al Jackson has tackled starship detection in recent...
Our View of a Decelerating Magsail
Yesterday's post looked at the question of starship detection. But the paper by Ulvi Yurtsever and Steven Wilkinson that I discussed actually focused on a highly specific subset of such observations, the case of an artificial object moving at such high gamma factors that the ship's velocity was over 99 percent of the speed of light. It may be that such things become possible to sufficiently advanced civilizations, but if they do and we observe them, we will be doing something akin to what Richard Carrigan does when he looks for Dyson spheres. Hunting a relativistic starship between galaxies is a kind of interstellar archaeology. What I mean is that if any of the researchers now looking for observational data of advanced civilizations turn something up in, say, M31, that construct will be so far away from us in both space and time that we might well be studying the ruins of an ancient culture. I made this case not long ago in an essay called Distant Ruins for Aeon magazine. This is a...
Starship Observational Signatures
Now and again in relatively rarefied SETI discussions the topic of starship detection comes up. Specifically, if there were a starship moving through the interstellar medium in the general vicinity of our perch in the Orion Arm, would we be able to detect any sort of signature in our astronomical data? Centauri Dreams regular Al Jackson has looked into this for a variety of starship types (and discussed the matter at Starship Congress in 2013), and so has Gregory Benford, whose 2006 novelette "Bow Shock" describes the detection of an object whose synchrotron radiation fits the signature of the bow shock of a craft something like a Bussard ramjet. We also have a 1995 paper from Robert Zubrin on the spectral signatures of starships and, back in 1977, a JBIS paper by D. R. J. Viewing and colleagues on relativistic spacecraft detection. Various detection methods come to mind, but Al Jackson has pointed out that the simplest would be finding the signature of waste heat (see SETI: Starship...
White Dwarfs and Dyson Spheres
There is a wonderful moment in Larry Niven’s 1970 novel Ringworld when protagonist Louis Wu is first shown an image of an artificial ring completely encircling a star. These days the concept of a Dyson sphere is well established as a way for a civilization to capture as much energy as possible from the host star, but back then I had never heard of the concept. Dyson thought both a solid shell and a ring would be unstable and believed the best form for his concept was what he described as “...a loose collection or swarm of objects traveling on independent orbits around the star.” In that sense, Niven’s Ringworld wasn’t really Dysonian, but I found it staggering. What a place! An engineered ring the diameter of Earth’s orbit fully 1.6 million kilometers wide, giving a habitable inner surface equal to about three million Earth-sized planets. A broader backdrop for science fiction adventure could scarcely be imagined unless it were a full-blown Dyson sphere. And indeed, Ringworld became...
Large Exomoons Shown to Be Detectable
The search for sub-planetary scale features in other solar systems continues, with encouraging news from the Hunt for Exomoons with Kepler project. A moon around a distant exoplanet is a prize catch, but as we’ve also seen recently, scientists are weighing the possibilities in detecting exoplanetary ring systems (see Searching for Exoplanet Rings). Confirming either would be a major observational step, but exomoons carry the cachet of astrobiology. After all, a large moon around a gas giant in the habitable zone might well be a living world. David Kipping (Harvard University) and colleagues at HEK have released a new study that tackles the question of how detectable exomoons really are. Published online today by the Astrophysical Journal, the paper examines 41 Kepler Objects of Interest, bringing the total number of KOIs surveyed by HEK thus far up to 57. The paper demonstrates that the process is beginning to move out of the realm of computer simulations and assumption-laden theory...
Chariklo & Chiron: Centaurs with Possible Rings
You may be forgiven if you aren't familiar with the name Chariklo. Discovered in 1997, 10199 Chariklo is a 'centaur,' an outer system body with an orbit that moves between the orbits of Saturn and Uranus, just nudging the orbit of the latter. Its odd name (we're big on names and their derivations here) comes from a nymph who in Greek mythology was the wife of Chiron and daughter of Apollo. No centaur is larger than Chariklo (estimated diameter 250 kilometers), and until just the other day, no other centaur was known to have what Chariklo did: A system of rings. We've just learned, though, that the second largest centaur, 2060 Chiron, may have a set of rings of its own, although there are alternative ways of interpreting the data. Whether Chiron's rings are confirmed or not, what was once thought to be an unusual phenomenon, a feature of Saturn alone, is now turning out to be far more common, with rings known to orbit Jupiter, Uranus and Neptune as well as Chariklo. So we have...
Can We Find Exoplanets Using the Titius-Bode Relation?
The Titius-Bode law has always been a curiosity, one often attributed to little more than happenstance. But recently this numerological curiosity, which predicts that planets in a solar system appear with a certain ratio between their orbital periods, has been the subject of renewed investigation. Francois Graner (Ecole Normale Superieure, Paris) and Berengere Dubrulle (Observatoire Midi Pyrenees, Toulouse) revisited Titius-Bode in the 1990s, asking whether it actually flagged symmetry properties that most solar systems should exhibit. And now continuing work out of Australian National University and the University of Copenhagen has made predictions using a modified version of the law that can be tested against observation of known exoplanetary systems. So we need to refresh our memory on the formulation, which shows us a relationship that predicts planetary orbits. Take a sequence where each number is double the number that preceded it. Thus 0, 3, 6, 12 and so on. Add 4 to each of...
The Colors of Extraterrestrial Life
One of these days we'll have the instruments in place to examine light from a terrestrial-class world around another star. This opens up the possibility of identifying atmospheric gases like oxygen, ozone, carbon dioxide and methane. All of these can occur in an atmosphere in the absence of life, but if we find them existing simultaneously in great enough quantities, we will have detected a possible biosignature, for without life's activity to replenish them, these gases would recombine and leave us with a much less tantalizing atmospheric mix. But tackling planetary atmospheres for biosignatures is only one way to proceed. An interdisciplinary team led by Cornell University's Lisa Kaltenegger and Siddharth Hegde (Max Planck Institute for Astronomy), is examining life detection based on the characteristic tint of lifeforms. An alien organism covering large parts of the planet -- think forests, for example, on Earth -- would reflect light at particular wavelengths, light that could be...