What Comets Are Made Of

When the Rosetta spacecraft's Philae lander bounced while landing on comet 67P/Churyumov-Gerasimenko last November, it was a reminder that comets have a hard outer shell, a black coating of organic molecules and dust that previous missions, like Deep Impact, have also observed. What we'd like to learn is what that crust is made of, and just as interesting, what is inside it. A study out of JPL is now suggesting possible answers. Antti Lignell is lead author on a recent paper, which reports on the team's use of a cryostat device called Himalaya that was used to flash freeze material much like that found in comets. The procedure was to flash freeze water vapor molecules at temperatures in the area of 30 Kelvin (minus 243 degrees Celsius). What results is something called 'amorphous ice,' as explained in this JPL news release. Proposed as a key ingredient not only of comets but of icy moons, amorphous ice preserves the mix of water with organics along with pockets of space. JPL's Murthy...

read more

Overcoming Tidal Lock around Lower Mass Stars

One of the big arguments against habitable planets around low mass stars like red dwarfs is the likelihood of tidal effects. An Earth-sized planet close enough to a red dwarf to be in its habitable zone should. the thinking goes, become tidally locked, so that it keeps one face toward its star at all times. The question then becomes, what kind of mechanisms might keep such a planet habitable at least on its day side, and could these negate the effects of a thick dark-side ice pack? Various solutions have been proposed, but the question remains open. A new paper from Jérémy Leconte (Canadian Institute for Theoretical Astrophysics, University of Toronto) and colleagues now suggests that tidal effects may not be the game-changer we assumed them to be. In fact, by developing a three-dimensional climate model that predicts the effects of a planet's atmosphere on the speed of its rotation, the authors now argue that the very presence of an atmosphere can overcome tidal...

read more

Twinkle: Studying Exoplanet Atmospheres

A small satellite designed to study and characterize exoplanet atmospheres is being developed by University College London (UCL) and Surrey Satellite Technology Ltd (SSTL) in the UK. Given the engaging name Twinkle, the satellite is to be launched within four years into a polar low-Earth orbit for three years of observations, with the potential for an extended mission of another five years. SSTL, based in Guildford, Surrey and an experienced hand in satellite development, is to build the spacecraft, with scientific instrumentation in the hands of UCL. The method here is transmission spectroscopy, which can be employed when planets transit in front of their star as seen from Earth. Starlight passing through the atmosphere of the transiting world as it moves in front of and then behind the star offers a spectrum that can carry the signatures of the various molecules there, a method that has been used on a variety of worlds like the Neptune-class HAT-P-11b and the hot Jupiter HD...

read more

We Have Fed Our Sea

One of the reasons I do what I do is that when I was a boy, I read Poul Anderson's The Enemy Stars. Published as a novel in 1959, the work made its original appearance the previous year in John Campbell's Astounding Science Fiction as a two-part serial titled "We Have Fed Our Sea." The reference is to Kipling's poem "The Song of the Dead," from which we read: We have fed our sea for a thousand years And she calls us, still unfed. Though there's never a wave of all her waves But marks our English dead... Space was, for Anderson, the new sea, one whose imperatives justify the sacrifices we make to conquer her, and "We Have Fed Our Sea" is a far better title for this work than its book version. Kipling writes: We were dreamers, dreaming greatly, in the man-stifled town; We yearned beyond the sky-line where the strange roads go down. Came the Whisper, came the Vision, came the Power with the Need... I bought The Enemy Stars at the Kroch's and Brentano's bookstore on S. Wabash Avenue in...

read more

New Views of Ceres, Pluto/Charon

Watching Ceres gradually take on focus and definition is going to be one of the great pleasures of February. The latest imagery comes from February 4, with the spacecraft having closed to about 145,000 kilometers. Here we're looking at a resolution of 14 kilometers per pixel, the best to date, but only a foretaste of what's to come. For perspective, keep in mind that while Ceres is the largest object in the main asteroid belt, its diameter is a scant 950 kilometers. Is there an ocean under this surface? Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI. Meanwhile, a good deal further out in the system, a small vial of Clyde Tombaugh's ashes continues its remarkable trek, with new imagery from New Horizons, the spacecraft carrying it, being released on the same day the Ceres images were taken, February 4, which happens to be Tombaugh's birthday. Born in 1906, Tombaugh's long life ended in 1997, and he has stayed very much in the thoughts of New Horizons principal investigator Alan...

read more

On the Role of Humans in Starflight

What does it take to imagine a human future among the stars? Donald Goldsmith asks the question in a recent op-ed for Space.com called Does Humanity's Destiny Lie in Interstellar Space Travel, playing off the tension between successful robotic exploration that has taken us beyond the heliosphere and the human impulse for personal experience of space. Along the way he looks at options for star travel both fast (wormholes) and slow (nuclear pulse, or Orion). A fine science writer who worked with Neil deGrasse Tyson on Origins: Fourteen Billion Years of Cosmic Evolution, Goldsmith nails several key issues. The successes of robotic exploration are obvious, and we're in the midst of several more energizing episodes -- the arrival of Dawn at Ceres and the approach of New Horizons to Pluto/Charon, as well as the recent cometary exploits of Rosetta. We have much to look forward to and, as mentioned yesterday, new impetus has arisen for the Europa Clipper mission, which would constitute a...

read more

On to Europa?

With the 2016 budget cycle beginning, it's heartening to see that Europa factors in as a target amidst a White House budget request for NASA of $18.5 billion, higher than any such request in the last four years, and half a billion dollars more than the agency received in the 2015 budget. This follows Congress' NASA budget increase of last year. Casey Dreier, who follows space policy issues for The Planetary Society, cites what he calls a 'new commitment to Europa', as seen in a request for $30 million to start the mission planning process. Dreier adds: At its most basic level, it means that NASA can pursue the development process to create a mission to explore Europa. That's new, and that's important. Europa has moved from "mission concept" to "mission," with details to figure out, plans to draw, teams to assemble, and hardware to build (eventually). It's a step that Congress could not force NASA to take (NASA being an executive branch agency and all) no matter how much money it gave...

read more

Looking Ahead to LightSail

The news that The Planetary Society is readying the first of its Lightsail spacecraft for a May launch stirs memories of Cordwainer Smith (Paul Linebarger) and mainframe computers. Smith wrote his haunting science fiction in the days when computers filled entire rooms, and the pilot who flies a solar sail thousands of kilometers wide in "The Lady Who Sailed the Soul" is there because, as a technician tells her, "...a sailor takes a lot less weight than a machine. There is no all-purpose computer built that weighs as little as a hundred and fifty pounds. You do. You go simply because you are expendable." Despite the anachronisms, Smith's short stories (collected in The Rediscovery of Man) are as mesmerizing as ever. As computers were big in those days, so have been our sail designs, from Smith's behemoth (towing 26,000 adiabatic pods containing frozen human settlers) to Robert Forward's beamed-laser sails. Given the need for harnessing the momentum of photons, all this makes sense,...

read more

A Review of the Best Habitable Planet Candidates

The fascination with finding habitable planets -- and perhaps someday, a planet much like Earth -- drives media coverage of each new, tantalizing discovery in this direction. We have a number of candidates for habitability, but as Andrew LePage points out in this fine essay, few of these stand up to detailed examination. We're learning more all the time about how likely worlds of a given size are to be rocky, but much more goes into the mix, as Drew explains. He also points us to several planets that do remain intriguing. LePage is Senior Project Scientist at Visidyne, Inc., and also finds time to maintain Drew ex Machina, where these issues are frequently discussed. by Andrew LePage The past couple of years have been eventful ones for those with an interest in habitable extrasolar planets. The media have been filled with stories about the discovery of many new extrasolar planets that have been billed as being "potentially habitable". Unfortunately follow-up observations and new...

read more

A Mini-Neptune Transformation?

Not long ago we looked at a paper from Rodrigo Luger and Rory Barnes (University of Washington) making the case that planets now in a red dwarf’s habitable zone may have gone through a tortured history. Because of tidal forces causing surface volcanism and intense stellar activity in young stars, a planet’s supply of surface water may be lost entirely. As the red dwarf slowly settles into the main sequence, the upper atmosphere of a planet in what will eventually become its habitable zone can be heated enough to cause its hydrogen to escape into space. Remember that M-dwarfs have a long, slow contraction phase, one that can last as long as a billion years. That exposes planets formed in what will ultimately become the habitable zone to extreme radiation, with hydrogen loss leading to a dessicated surface inimical to life. In such worlds, a dense oxygen envelope could remain, in which case we might detect oxygen and mistakenly take it for a bio-signature (see Enter the ‘Mirage Earth’...

read more

Small Planets, Ancient Star

Finding planets around stars that are two and a half times older than our own Solar System causes a certain frisson. Our star is four and a half billion years old, evidently old enough to produce beings like us, who wonder about other civilizations in the cosmos. Could there be truly ancient civilizations that grew up around stars as old as Kepler-444, a K-class star in the constellation Lyra that is estimated to be fully 11.8 billion years old? It's a tantalizing speculation, and of course, nothing more than that. But the discovery of planets here still catches the eye. The just announced discovery and accompanying paper are the work of Tiago Campante (University of Birmingham, UK), who led a large team in the investigation. What we learn is that five planets have been discovered using Kepler data around a star that is 117 light years from Earth. These are not habitable worlds by our standards -- all five planets complete their orbits in less than ten days, making them hotter than...

read more

Enormous Ring System Hints of Exomoons

Might there be gas giant planets somewhere with moons as large as the Earth, or at least Mars? Projects like the Hunt for Exomoons with Kepler (HEK) are on the prowl for exomoons, and the possibility of large moons leads to astrobiological speculation when a gas giant is in its star's habitable zone. Interestingly, we may be looking at evidence of an extremely young -- and very large -- moon in formation around a planet that circles the young star J1407. That would be intriguing in itself, but what researchers at Leiden Observatory (The Netherlands) and the University of Rochester have found is an enormous ring structure that eclipses the young star in an epic way. The diameter of the ring system, based on the lightcurve the astronomers are getting, is nearly 120 million kilometers, which makes it more than two hundred times larger than the rings of Saturn. This is a ring system that contains about an Earth's mass of dust particles, with a marked gap that signals the possibility of...

read more

Who Will Read the Encyclopedia Galactica?

Can a universal library exist, once that contains all possible books? Centauri Dreams regular Nick Nielsen takes that as just the starting point in his latest essay, which tracks through Borges’ memorable thoughts on the matter to Carl Sagan, who brought the idea of an Encyclopedia Galactica to a broad audience. But are the two libraries one and the same? Nielsen takes the longest possible view of time, exploring a remote futurity beyond the Stelliferous era, to ask when an Encyclopedia Galactica would ever be complete, and who, when civilizations as we know them have ceased to exist, would evolve to read them. If Freeman Dyson’s conception of ‘eternal intelligence’ intrigues you, read on to see how it might emerge. Nielsen authors two blogs of his own, Grand Strategy: The View from Oregon and Grand Strategy Annex, in which a philosophical take on the human future is always at play, but perhaps never so strikingly as in this essay on intellect and its potential to survive. J. N....

read more

Giovanni Vulpetti: Clarifying Magsail Concepts

Over the years we've looked at magnetic sail (magsail) concepts of various kinds and discussed whether a spacecraft could do such things as 'riding' the solar wind to high velocities, or use a stellar wind to brake against as it entered a destination solar system. But just how workable is the magsail? In a 2007 paper called "Theory of Space Magnetic Sail Some Common Mistakes and Electrostatic MagSail" now available on the arXiv site, Alexander Bolonkin argues that magsail concepts are unworkable because induced fields resulting from two-way interactions between the solar wind and the craft's magsail disrupt the previously calculated effect. In fact, Bolonkin believes that previous work on the matter is seriously compromised, as he said upfront in the abstract of his paper: The first reports on the "Space Magnetic Sail" concept appeared more [than] 30 years ago. During the period since some hundreds of research and scientific works have been published, including hundreds of research...

read more

Drake Equation: The Sustainability Filter

There are a lot of things that could prevent our species from expanding off-Earth and gradually spreading into the cosmos. Inertia is one of them. If enough people choose not to look past their own lifetimes as the basis for action, we're that much less likely to think in terms of projects that will surely be multi-generational. That outcome doesn't worry me overly much because it flies against the historical record. We have abundant evidence of long-term projects built by civilizations for their own purposes, and while we view pyramids or cathedrals differently than they did in their time, their artifacts show that humans are capable of this impulse. The Dutch dike system has been maintained for over 500 years, and precursor activity can be traced back as far as the 9th Century. Nor am I concerned that most people won't ever want to leave this planet. I have no ambition to leave it either, but in every era there have been small numbers of people who chose to leave what they knew to...

read more

Dawn: New Imagery of Ceres

Mark January 26 on your calendar. It’s the day when the Dawn spacecraft will take images of Ceres that should exceed the resolution of the Hubble Space Telescope. We’re moving into that new world discovery phase that is so reminiscent of the Voyager images, which kept re-writing our textbooks on the outer Solar System. 2015 will be a good year for such, with Dawn being captured by Ceres gravity on March 6, and New Horizons slated for a July flyby of Pluto/Charon. In both cases, we will be seeing surfaces features never before observed. What we have so far from Dawn can’t match earlier Hubble imagery, the best of which is about ten years old, but it’s about three times better than the calibration images taken by the spacecraft in early December. At this point, Dawn is making a series of images to be used for navigation purposes during the approach to the dwarf planet. We have sixteen months of close study of Ceres to look forward to as the excitement builds. “Already,” says Andreas...

read more

Making the Case for Deep Space

I get few questions that are harder to answer than 'what happened to the sense of adventure that we once had with Apollo?' And there are few questions I get more often, usually accompanied by 'how are we going to do starflight if we don't even have the will to go back to the Moon?' Both questions have unsettling answers, but the second question is open-ended. We can hope that the 'sense of sag' that Michael Michaud describes in talking about the post-Apollo period (for manned flight, at least) may itself evolve into something else, something far more hopeful. But let's dwell a moment on the first question. I've been looking over an essay Michaud wrote for Spaceflight in the mid-1970s, a decade of the Pioneers and the Voyagers, but also a decade when it became clear that our presence on the Moon with Apollo was going to be a short-lived affair. Instead, we were talking about Skylab, about docking operations between Soviet and American spacecraft, and the next big ticket item on the...

read more

Planets to Be Discovered in the Outer System?

Having just looked at the unusual ‘warped’ disk of HD 142527, I’m inclined to be skeptical when people make too many assumptions about where planets can form. Is our Solar System solely a matter of eight planets and a Kuiper Belt full of debris, with a vast cometary cloud encircling the whole? Or might there be other small planets well beyond the orbit of Neptune, planets much larger than dwarfs like Pluto but not so large that we have been able to detect them? Certainly Carlos de la Fuente Marcos and Raúl de la Fuente Marcos (Complutense University of Madrid), working with Sverre J. Aarseth (University of Cambridge) think evidence exists for this proposition. The scientists are interested in how large objects can affect the trajectories of small ones, and in particular what a comet named 96P/Machholz 1 can reveal about how such interactions work. They’re focused on the Kozai mechanism, which explains how the larger object causes a quantified libration in the smaller object’s orbit,...

read more

Naming Names in the Cosmos

How objects in the sky get named is always interesting to me. You may recall that the discovery of Uranus prompted some interesting naming activity. John Flamsteed, the English astronomer who was the first Astronomer Royal, observed the planet in 1690 and catalogued it as 34 Tauri, thinking it a star, as did French astronomer Pierre Lemonnier when he observed it in the mid-18th Century. William Herschel, seeing Uranus in 1781, thought at first that it was a comet, and reported it as such to the Royal Society. By 1783, thanks to the work of the Russian astronomer Anders Lexell and Berlin-based Johann Elert Bode, Herschel came to agree that the new object was indeed a planet. Herschel, asked by then Astronomer Royal Nevil Maskelyne to name the new world, declared it to be Georgium Sidus, the 'Georgian Planet,' a name honoring King George III. The unpopular name soon met with alternative suggestions, including Herschel, Neptune and (Bode's own idea) Uranus. Image: Sir William Herschel...

read more

HD 142527: Shadows of a Tilted Disk

About a year ago we looked at a young star called HD 142527 in the constellation Lupus (see HD 142527: An Unusual Circumstellar Disk). A T Tauri star about five million years old, HD 142527 has drawn attention because it shows evidence of both an inner and an outer disk, each of which may be capable of producing planets. These are disks with a twist, as astronomers at the Millennium ALMA Disk Nucleus project at the Universidad de Chile demonstrate in a new paper that explains the three-dimensional geometry of this unusual system. HD 142527's two disks are striking because no other star shows a gap this large between an inner and outer disk, a gap that spans a region from 10 AU out to 120 AU. Two dark regions stand out in observations of the outer disk that break its continuity. The new study reveals these outer disk features to be caused by the shadow of the inner disk. The shape and orientation of the shadows thus become a measure of the inner disk's orientation. Using radiative...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives