Uranus: New Work from Voyager Data

The ring system of Uranus was the second to be discovered in our Solar System. You would assume this came about because of Voyager, but the discovery was actually made in 1977 through ground-based observations involving occultations of distant stars. The rings of Uranus are narrow -- between 1 and 100 kilometers in width -- and many are eccentric. The fact that they are composed of dark particles makes detection and study particularly difficult. Image: Uranus is seen in this false-color view from NASA's Hubble Space Telescope from August 2003. The brightness of the planet's faint rings and dark moons has been enhanced for visibility. Credit: NASA/Erich Karkoschka (Univ. Arizona). Voyager 2’s flyby of the planet in January of 1986 gave us useful information about the rings’ structure, with three occultation experiments performed during the flyby. We learned that the moons Cordelia and Ophelia were helping to shape the eccentricity of some of the rings (deviations of tens to hundreds...

read more

New Clue to Gas Giant Formation

Just how do gas giant planets form? A team of researchers at ETH Zürich, working with both the University of Zürich and the University of Bern, has developed the most fine-grained and instructive computer simulations yet to help us understand the process. Using the Piz Daint supercomputer at the Swiss National Supercomputing Centre (CSCS) in Lugano, ETH Zürich postdoc Judit Szulágyi and Lucio Mayer (University of Zürich) can now show clear and observable differences between the two formation processes under study by theorists. The core accretion model begins with a massive solid core that is large enough to pull in gas from the protoplanetary disk and maintain it. The gravitational instability theory, on the other hand, presumes a massive enough disk around the young host star that spiral arms form in the disk in which gravitational collapse can occur around material that has begun to clump there. The simulations demonstrate that with either formation mechanism, a circumplanetary...

read more

A Renewed Look at Boyajian’s Star

It was inevitable that KIC 8462852 would spawn a nickname, given the public attention given to this mystifying star, whose unusual lightcurves continue to challenge us. 'Tabby's Star' is the moniker I've seen most frequently, but we now seem to be settling in on 'Boyajian's Star.' It was Tabetha Boyajian (Louisiana State) whose work with the Planet Hunters citizen science project brought the story to light, and in keeping with astronomical naming conventions (Kapteyn's Star, Barnard's Star, etc.), I think the use of the surname is appropriate. Planet Hunters works with Kepler data, looking for any dimming of the 150,000 monitored stars that may have gone undetected by the automated routines that hunt for repeating patterns. Boyajian's Star cried out for analysis, dimming in odd ways that flagged not the kind of planetary transit across the face of a stellar disk that researchers expected but something else, something that would make the star dim by as much as 22 percent, and at...

read more

Are Planets Like Proxima b Water Worlds?

Those of us fascinated by dim red stars find these to be exhilarating days indeed. The buzz over Proxima b continues, as well it should, given the fact that this provocative planet orbits the nearest star. We also have detections like the three small planets around TRAPPIST-1, another red dwarf that is just under 40 light years out in the constellation Aquarius. These are small stars indeed, just 8 percent the mass of the Sun in the case of the latter, while Proxima Centauri is about 10 times less massive (and 500 times less luminous) than the Sun. But just what might we find on planets like these? A new paper from Yann Alibert and Willy Benz (University of Bern) drills down into their composition. The researchers' goal is to study planet formation, with a focus on planets orbiting within 0.1 AU, a range that includes the habitable zone for such stars. While a forthcoming paper will look at the formation process of these planets in greater detail, the present work studies planetary...

read more

A Microlensing Opportunity for Centauri A

First light for the European Extremely Large Telescope (E-ELT) is scheduled for 2024, a useful fact given that a few years later, we may be able to use the instrument in a gravitational lensing opportunity involving Alpha Centauri. Specifically, Centauri A is expected to align with the star 2MASS 14392160-6049528, thought to be a red giant or supergiant and far more distant than Alpha Centauri. This will create an event that not just the E-ELT but other instruments, like the GRAVITY instrument on the Very Large Telescope Interferometer (VLTI), will be able to study -- GRAVITY is capable of extremely high accuracy astrometry. A team of French astronomers led by Pierre Kervella (CNRS/Universidad de Chile) is behind this new study, which involved fine-tuning our knowledge of the trajectories of Centauri A and B. Remember that we see gravitational lensing when a massive object like a star distorts the spacetime around it, so that light from the more distant object must follow a curved...

read more

Red Dwarfs: Oldest Known Circumstellar Disk

Determining the age of a star is not easy, but one way of proceeding with at least some degree of confidence is to identify the star as a member of a stellar association. Here we’re talking about a loose cluster of stars of a common origin. Over time, the stars have begun to separate, but they still move together through space. It was the Armenian astronomer Viktor Ambartsumian, the founder of the Byurakan Observatory, who discovered the nature of these associations and demonstrated that they were composed of relatively young groups of stars. Stellar associations, or young moving groups (YMGs), provide an outstanding place to study the evolution of protoplanetary disks around young stars, for all associated stars have a similar age. Indeed, their galactic motion can be traced back to their place of origin. Another benefit: Exoplanets in such infant systems are often still hot, well within the capabilities of our near-infrared direct imaging techniques. Many direct imaging and disk...

read more

Titan’s Seasons Studied as Cassini Team Plans ‘Grand Finale’

Witnessing Titan's ever-changing seasons has been a major payoff of the Cassini mission, whose end is now close enough (September, 2017) to cause us to reflect on its accomplishments. We now see winter settling in firmly in the southern hemisphere, along with a strong vortex now developing over the south pole. When Cassini arrived in 2004, we saw much the same thing, only in the northern hemisphere. Athena Coustenis (Observatoire de Paris) is presenting results on Titan's climate at the ongoing joint meeting of the American Astronomical Society's Division for Planetary Sciences and 11th European Planetary Science Congress. "Cassini's long mission and frequent visits to Titan have allowed us to observe the pattern of seasonal changes on Titan, in exquisite detail, for the first time," says Dr. Coustenis. "We arrived at the northern mid-winter and have now had the opportunity to monitor Titan's atmospheric response through two full seasons. Since the equinox, where both hemispheres...

read more

New Work on Planet Nine

Considering how long we've been thinking about a massive planet in the outer Solar System — and I'm going all the way back to Percival Lowell's Planet X here — the idea that we might find the hypothetical Planet Nine in just three years or so is a bit startling. But Caltech's Mike Brown and colleague Konstantin Batygin, who predicted the existence of the planet last January based on its effects on Kuiper Belt objects, are continuing to search the putative planet's likely orbital path, hoping for a hit within the next few years, a welcome discovery if it happens. The duo are working with graduate student Elizabeth Bailey, lead author of a new study being discussed at the American Astronomical Society's Division for Planetary Sciences meeting in Pasadena, which is occurring in conjunction with the European Planetary Science Congress. The new paper is all about angles and alignments, focusing on the fact that the relatively flat orbital plane of the planets is tilted about...

read more

New Horizons: Looking Further Out

We're getting close on New Horizons data, all of which should be downlinked as of this weekend. Although that's a welcome marker, it hardly means the end of news from the doughty spacecraft. For one thing, we have years of analysis ahead of us as we bring the abundant data from the spacecraft's instrument packages into focus. For another, we're still in business out there in the Kuiper Belt, heading for that interesting object 2014 MU69. Who knows what will turn up at the latter, given our propensity to be surprised at every turn in interplanetary exploration, from Triton's volcanic plains to fabulously fractured Miranda. And, of course, Pluto and Charon themselves, which turned out to be so interesting that Alan Stern, principal investigator for New Horizons, is already talking about future missions there. But back to 2014 MU69, which has continued to be the subject of Hubble observations even as New Horizons homes in on the object. As this news release from the mission points out,...

read more

Antimatter Sail: Focus on Storage

An antimatter sail, as described yesterday in the work of Gerald Jackson and Steve Howe, is an exciting idea particularly because it relies on only small amounts of antimatter, tapping its energies to create fission in a uranium-enriched sail. Thus the uranium is the fuel and the antimatter, as Jackson says, is the 'spark plug.' We reduce the needed amount of antimatter and define what the new Kickstarter campaign calls "...the first proposed antimatter-based propulsion system that is within the near-term ability of the human race to produce." The antimatter sail produces fission by allowing antimatter, stored probably as antihydrogen, to drift across to the sail, and as we saw yesterday, the potential for velocities up to 5 percent of lightspeed mean that such a sail could be deployed on interstellar missions. Proxima Centauri naturally emerges as a target, but Jackson and Howe's work is not a result of recent interest in that star and its one known planet. The 2002 study in which...

read more

Antimatter and the Sail

An antimatter probe to a nearby star? The idea holds enormous appeal, given the colossal energies obtained when normal matter annihilates in contact with its antimatter equivalent. But as we’ve seen through the years on Centauri Dreams, such energies are all but impossible to engineer. Antimatter production is infinitesimal, the by-product of accelerators designed with a much different agenda. Moreover, antimatter storage is hellishly difficult, so that maintaining large quantities in a stable condition requires multiple breakthroughs. All of which is why I became interested in the work Gerald Jackson and Steve Howe were doing at Hbar Technologies. Howe, in fact, became a key source when I put together the original book from which this site grew. This was back in 2002-2003, and I was captivated with the idea of what could be called an ‘antimatter sail.’ The idea, now part of a new Kickstarter campaign being launched by Jackson and Howe, is to work with mere milligrams of antimatter,...

read more

Cosmology: Shelter from the Storm

I had thought while the power was out this past week that I would like to write about cosmology when it came back. That's because there's nothing like a prolonged power outage to adjust your perspective. The big picture beckons. In my case, it was thinking about how trivial being out of power was compared to those who had lost so much more in the wake of the recent hurricane. So thinking about the cosmos became my shelter from the storm. I appreciated the emails from so many of you, but aside from a major chunk of tree that landed on the roof, we did just fine. In fact, it was deeply moving to see people from the neighborhood -- some I knew, some I only recognized -- turn up to get up on the roof and move that tree. I'm always reminded to do more for the people around me when I see something like this, and apprehensive that my resolution to do so all too often gets put aside as normal life returns. The Universe We Can See Reading by candlelight really is wonderful, and I ask myself...

read more

Working in the Dark

Hurricane Matthew's effects continue to be felt in the form of flooding, power outages and downed trees. I'm now told not to expect power for 4-6 days. The situation obviously impacts my ability to post here. I'll try to keep up with comment moderation when possible. Will get things back to normal whenever the lights come back on.

read more

Spiral Density Waves: Clue to Planet Formation?

Have a look at the spiral of pinwheeling dust that can be seen around the young star Elias 2-27. We're looking at gravitational perturbations in a protoplanetary disk that, as this National Radio Astronomy Observatory news release says, mimic the vast arms we expect in a spiral galaxy. But here we're looking at a process with implications for planet formation, one that draws on data from the Atacama Large Millimeter/submillimeter Array (ALMA). This is the first time a spiral density wave has been detected in a protoplanetary disk's planet formation areas. Image: ALMA peered into the Ophiuchus star-forming region to study the protoplanetary disk around the young star Elias 2-27. Astronomers discovered a striking spiral pattern in the disk. This feature is the product of density waves - gravitational perturbations in the disk. Credit: L. Pérez (MPIfR), B. Saxton (NRAO/AUI/NSF), ALMA (ESO/NAOJ/NRAO), NASA/JPL Caltech/WISE Team. Some 450 light years from Earth in the Ophiuchus...

read more

Detecting Long-Period Planets & Stellar Companions

Spotting planets a long way from their stars is no easy proposition when you’re using radial velocity methods. The idea is to track the minute movement of the star as it is affected by an orbiting planet, which shows up as a Doppler shift in the data. What we’re actually seeing is the star and planet orbiting the center of gravity, an indirect method of detection that observes not the planet itself but the effects of the planet as it produces this variation in radial velocity. The first exoplanets were detected this way, and the method has continued to produce new discoveries. But as a planet’s distance from its star increases, radial velocity becomes tricky to use. Now observation times become extended as the planet completes its longer orbit. We face the same issue with the transit method, which charts the drop in brightness as a planet moves across the face of its star as seen from Earth. Here, too, planets in distant orbits around their star are hard to detect because of the...

read more

On Outer System Oceans

Back in the days when I was reading Poul Anderson's The Snows of Ganymede and thought of the moons of Jupiter as icy wastelands, I never would have dreamed there could be an ocean below their surfaces. But now we have oceans proliferating. Ganymede's may contain more water than all Earth's oceans, while Callisto is also in the mix, and we've known about Europa for some time now. At Saturn, the case for an ocean inside Titan seems strong, while Enceladus continues to spark mission proposals to study its frequent geysers. If you're a Centauri Dreams regular, you know that we've talked about Pluto's oceanic possibilities for some time, now strengthened in new work from Brandon Johnson (Brown University). Johnson and colleagues have modeled an ocean layer on Pluto more than 100 kilometers thick, with a salt content more or less like that of the Dead Sea on Earth. Johnson focused on Sputnik Planum, the 900-kilometer basin that comprises part of the heart-shaped feature we all learned to...

read more

System Evolution: Delving into Brown Dwarf Disks

We’ve seen circumstellar disks around numerous stars, significant because it is from such disks that planets are formed, and we would like to know a good deal more about how this process works. Now we have word of planet-forming disks around several low-mass objects that fit into the brown dwarf range, and one small star about a tenth the mass of the Sun. With the brown dwarfs, we’re working with objects small enough to be at the boundary between planet and star. The work is led by Anne Boucher (Université de Montréal), whose team drew photometric data from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE) mission, allowing the detection of the objects at infrared wavelengths. Boucher notes the strong attraction such objects hold for astronomers: “Finding disks in low-mass systems is really interesting to us, because objects that exist at the lower limit of what defines a star and that still have disks that indicate planet formation can tell us...

read more

Thoughts on Rosetta’s End

A mission as complex as the European Space Agency's highly successful Rosetta is a compilation of interlocking parts. I always find it fascinating to look at the instrumentation aboard. Take Alice, a UV imaging spectrograph no bigger than a shoebox. Alice weighs in at less than 4 kilograms and draws a meager 4 watts of power, but it offered us a thousand times the data we could retrieve with similar instruments no more than a generation ago. Alice produced over 70,000 spectra in two years, according to its principal investigator, Alan Stern (a familiar name indeed for those interested in the outer Solar System!) With these data we're learning about the porous surface of the comet, its lack of exposed water ice, and the unexpected occurrence of molecular hydrogen around it. Rosetta's Ion and Electron Spectrometer (IES), likewise the work of the Southwest Research Institute, is another triumph of miniaturization, achieving the sensitivity of instruments weighing five times as much (IES...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives