Given the interest the unusual star KIC 8462852 has generated here and elsewhere, I want to be sure those of you in California are aware of an upcoming talk that touches on the matter, as well as broader SETI issues. Titled "The Breakthrough Initiative - Listen and Megastructures at KIC 8463," the talk will be delivered by Andrew Siemion (UC-Berkeley). The venue is 1065 La Avenida Street, Mountain View, CA 94043. The time: Tuesday, February 23, 2016 from 12:00 PM to 1:00 PM (PST). More at this web page, from which the description that follows: Dr. Andrew Siemion, Director of the Berkeley SETI Research Center (BSRC) at the University of California, Berkeley, will present an overview of the Breakthrough Listen Initiative, 100-million-dollar, 10-year search for extraterrestrial intelligence. Dr. Siemion will also discuss other SETI efforts ongoing at the BSRC, including the successful citizen science project SETI@Home, as well as a concerted effort to undertake panchromatic observations...
Charon: Evidence of an Ancient Ocean
I will admit to a fascination with Pluto's moon Charon that began even before it was discovered. Intrigued by the most distant places in the Solar System, I had always imagined what the view would be like from a tiny moon circling Pluto. At the time, we didn't know about Charon, so my vantage point was more like what we now know Kerberos or Styx to be. Then my interest tripled when the sheer size of Charon became known. A large moon was truly a world of its own, and Charon rose in my estimation to rival my other most intriguing moon, Neptune's Triton. Now we have word that Charon may once have had an internal ocean, still further evidence of the intricacy of objects in or near the Kuiper Belt. In Charon's case, something intriguing is shown by a study of the surface, one side of which New Horizons saw during the July 2015 flyby. What appears to be a series of tectonic faults that show up in the form of ridges, scarps and valleys reveals a surface that has to have been stretched over...
WFIRST: Moving Closer to a Mission
We learned on Wednesday that the Agency Program Management Council, which works under the aegis of NASA, has made the decision to proceed with the Wide Field Infrared Survey Telescope. WFIRST is the next step in major astrophysical observatories after the launch of the James Webb Space Telescope in 2018, an instrument that will work at near-infrared wavelengths to study dark matter and dark energy, with a significant exoplanet component. All these issues are relevant to what we do here at Centauri Dreams, but the exoplanet aspect of the mission, which includes a coronagraph to allow the close inspection of distant solar systems, is particularly interesting. Blocking the otherwise overwhelming glare of a host star (even at these wavelengths), the WFIRST coronagraph should help to reveal the planets around it, a crucial separation that will allow us to make spectrographic measurements of the chemical makeup of planetary atmospheres. Paul Hertz, director of NASA's astrophysics division...
Tracking the Chelyabinsk Impactor
Yesterday's post on the distribution of asteroid populations inevitably had me thinking about the Chelyabinsk event on February 15, 2013, and about the concurrent flyby of the asteroid (367943) Duende, which took place on the same day. A scant sixteen hours after the explosion of the Chelyabinsk bolide and the fall of five tons of meteoritic material to the ground in Siberia, (367943) Duende passed by at about 27,700 kilometers above the surface of the Earth. We talked yesterday about learning more about asteroid distributions, so we could understand where they come from and what to expect as we assess their trajectories. In the case of Chelyabinsk, it was originally thought that both events were related, with the Chelyabinsk impactor associated with (367943) Duende in the form of a companion object, or perhaps as material that broke away from the parent asteroid. But an analysis of the orbits of both objects as well as spectroscopic analysis of Duende and the Chelyabinsk material...
A New Look at Asteroid Distribution
We know that understanding Near-Earth Objects is vital not only for assessing future asteroid surveys and spacecraft missions, but also for tracking potential impactors on Earth. Projects like the Catalina Sky Survey and its now defunct southern hemisphere counterpart, the Siding Spring Survey, are all about asteroid and comet discovery, with a more specific goal of looking for objects posing a potential hazard to our planet. We lost the Siding Spring effort in 2013 due to funding problems, but the Catalina Sky Survey (CSS) is still in robust operation. The survey draws data from a 1.5 meter telescope on the peak of Mt. Lemmon (Arizona) and a 68 centimeter instrument nearby at Mt. Bigelow. Now we have word that Mikael Granvik (University of Helsinki) and an international team of researchers have drawn on about 100,000 images acquired by the Catalina Sky Survey to study the properties of some 9000 NEOs detected in an eight-year period. The goal is to construct a model for the...
Light, Dry Atmosphere of a ‘Super-Earth’
We’re probing the atmospheres of exoplanets both from the Earth and from space. Transmission spectroscopy allows us to look at the spectra of starlight at various wavelengths as a transiting planet passes first in front of its host star, and then moves behind it. Now we have news of a successful detection of gases in the atmosphere of a super-Earth, using data from the Hubble Space Telescope. The team, made up of researchers at University College London and Catholic University of Leuven (Belgium) calls this a significant first. “This is a very exciting result because it’s the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth,” said Angelos Tsiaras, a PhD student at UCL, who developed the analysis technique along with colleagues Dr. Ingo Waldmann and Marco Rocchetto in UCL Physics & Astronomy. “Our analysis of 55 Cancri e’s atmosphere suggests that the planet has managed to cling on to a significant...
Saying Goodbye to Philae
Landing on a small object in the Solar System isn't easy. Witness the Philae lander, which traveled to Comet 67P/Churyumov-Gerasimenko as part of the European Space Agency's Rosetta mission. Philae 'landed' on November 12, 2014, having to deal with a malfunctioning thruster along the way. Upon arrival at the surface of the comet, Philae was to have fired anchoring harpoons to steady itself on the surface, but after a dramatic seven-hour descent, the harpoons failed to fire. Thus the lander did touch down at the initial landing site, called Agilkia, but then bounced to a new site -- Abydos -- about a kilometer away. Even now, we're not sure just where Philae is despite imagery from the orbiting Rosetta. What ESA has told us, however, is that the lander evidently made contact with the comet four times during an unplanned for two-hour additional flight across the surface. During the process it grazed the rim of a depression called Hatmehit on its way to its resting place at Abydos....
Pondering Gravitational Waves
“Einstein would be beaming,” said National Science Foundation director France Córdova as she began this morning’s news conference announcing the discovery of gravitational waves. I can hardly disagree, because we have in this discovery yet another confirmation of the reality of General Relativity. Caltech’s Kip Thorne, who discussed black hole mergers way back in 1994 in his book Black Holes and Time Warps, said at the same news conference that Einstein must have been frustrated by the lack of available technologies to detect the gravitational waves his theory predicted, a lack that it took a century to remedy with the LIGO collaboration. Thorne believes that if he had been armed with the right tools, Einstein himself would have made the detection. But of course the tools weren’t there. Somehow that thought produced an odd echo of the very decade of General Relativity’s emergence, one that shows how much GR changed the nature of our view of the universe. It was in 1911, just four...
A Future We Can Choose
The very small may lead us to the very large. Payload sizes, for one thing, can be shrunk as we increasingly master the art of miniaturization, giving us far more bang for the buck. In that sense, we can think about tiny interstellar probes that may one day be sent, as Robert Freitas has envisioned, in waves of exploration, each of them no larger than a sewing needle, but armed with artificial intelligence and capable of swarm-like behavior. Mastering the tiny thus enables the longest of all journeys. But thinking about small payloads also makes me ponder much larger constructs. Suppose in a hundred years we can work at the atomic level to build structures out of the abundant raw material available in the asteroid or Kuiper belts. It's possible to imagine enormous arcologies of the kind discussed by Gerard O'Neill that may one day house substantial human populations. In this way nanotech opens the door to renovation in the realm of gigantic colony worlds. And if one of these colony...
Inside Rocky Exoplanets
We’ve gone from discovering the presence of exoplanets to studying their atmospheres by analyzing the spectra produced when a planet transits in front of its star. We’re even in the early stages of deducing weather patterns on some distant worlds. Now we’re looking at probing the inside of planets to learn whether their internal structure is something like that of the Earth. The work is led by Li Zeng (Harvard-Smithsonian Center for Astrophysics), whose team developed a computer model based on the Preliminary Reference Earth Model (PREM), the standard model for the Earth’s interior. Developed by Adam Dziewonski and Don L. Anderson for the International Association of Geodesy, PREM attempts to model average Earth properties as a function of radius. Zeng adjusted the model for differing masses and compositions and applied the revised version to six known rocky exoplanets with well understood characteristics. The work shows that rocky worlds should have a nickel/iron core that houses...
Probing the Interior of a Comet
Knowing what comets are made of -- dust and ice -- only begins to answer the mystery of what is inside them. A compact object with this composition should be heavier than water, but we know that many comets have densities much lower than that of water ice. The implication is that comets are porous, but what we'd still like to know is whether this porosity is the result of empty spaces inside the comet or an overall, homogeneous low-density structure. For answers, we turn to the European Space Agency's continuing Rosetta mission. In a new paper in Nature, Martin Pätzold (Rheinische Institut für Umweltforschung an der Universität zu Köln, Germany) and team have gone to work on the porosity question by analyzing Comet 67P/Churyumov-Gerasimenko, around which Rosetta travels. It's no surprise to find that 67P/Churyumov-Gerasimenko is a low-density object, but an examination of the comet's gravitational field shows that we can now rule out a cavernous interior. Image: These images of comet...
The Distant Thing Imagined
If there's one thing Pluto turned out to have beyond all expectation, it's geological activity. New Horizons is now showing us what researchers are calling 'hills of water ice' floating in a sea of frozen nitrogen, much like icebergs moving through our own Arctic Ocean. The isolated hills are thought to be fragments of the water ice in the surrounding upland regions. Measuring several kilometers across, they are found in Sputnik Planum, a plain within Pluto's 'heart.' Image: The image shows the inset in context next to a larger view that covers most of Pluto's encounter hemisphere. The inset was obtained by New Horizons' Multispectral Visible Imaging Camera (MVIC) instrument. North is up; illumination is from the top-left of the image. The image resolution is about 320 meters per pixel. The image measures a little over 500 kilometers long and about 340 kilometers wide. It was obtained at a range of approximately 16,000 kilometers from Pluto, about 12 minutes before New Horizons'...
Saturn’s Rings: Puzzling Mass Density Findings
Given that we have four planets in our Solar System with rings, it's a natural thought that if so-called Planet Nine does exist, it might likewise show a system of rings. After all, Caltech's Konstantin Batygin and Mike Brown are talking about a planet with a mass on the order of ten times that of the Earth. Neptune is about 17 Earth masses, while Uranus is 14.5 as massive. If Planet Nine is an ejected ice giant, perhaps it joins Uranus, Neptune, Jupiter and Saturn in having a ring system of its own, along with a thick atmosphere of hydrogen and helium. Of course, we have to discover Planet Nine first, a process that may take some time if, indeed, it is successful. Meanwhile, we have interesting developments in the Solar System's most intriguing ring system. As compared with those of other planets, Saturn's rings are visually stunning. The B ring is the brightest and most opaque of the planet's rings, but now we're finding out that brightness and opacity have little correlation with...
A New Look at the ‘Big Whack’
Somewhere a decade or so back in these pages a Centauri Dreams commenter described the event that formed our Moon as ‘the big whack.’ Although I hadn't run across it before, the phrase turns out to have been common parlance for what is now thought to be a massive collision between the Earth and an early planetesimal. But whatever the case, we know a bit more about the cataclysm thanks to new work out of UCLA, as reported in the journal Science. The impactor, which struck about 4.5 billion years ago, is commonly called Theia. So how do we analyze such a remote event? The key, as discussed in this UCLA news release, is oxygen, which makes up 90 percent of the volume of lunar rocks the team of geochemists studied, and 50 percent of their weight. Usefully, oxygen can manifest itself in various isotopes, the most common on Earth being O-16, meaning each atom holds eight protons and eight neutrons. Image: Light image of a lunar rock from the Apollo 17 mission. Credit: NASA. Heavier...
A Telescope Eight Times the Diameter of Earth
If you're looking for detailed imagery of a distant astronomical object, VLBI (Very Long Baseline Interferometry) can deliver the goods. As witness the image below, which the National Radio Astronomy Observatory (NRAO) is calling "the highest resolution astronomical image ever made." Here we see radio emission from a jet of particles moving close to the speed of light. The particles are being accelerated by a supermassive black hole at the core of the galaxy BL Lacertae, a highly variable 'active galaxy' some 900 million light years from the Earth. Image (click to enlarge): Signals from 15 ground-based radio telescopes, combined with data from the RadioAstron orbiting satellite, produced the highest resolution astronomical image ever made. Credit: Gomez, et al., Bill Saxton, NRAO/AUI/NSF. What fascinates me about this work is the technique. Very Long Baseline Interferometry works by collecting a signal at multiple radio telescopes, the distance between them being calculated from the...
New Pluto Imagery
Newly interpreted data from the New Horizons spacecraft tells us that Pluto has more water ice on its surface than we once thought. The image below tells the tale, a false-color view derived from observations by the Ralph/Linear Etalon Imaging Spectral Array (LEISA) instrument. Here we're at infrared wavelengths and can see areas showing the spectral signature of water ice. Note the sharp contrast between the left and right sides of the image below. Image: This false-color image is derived from observations in infrared light by the Ralph/Linear Etalon Imaging Spectral Array (LEISA) instrument. It is based on two LEISA scans of Pluto obtained on July 14, 2015, from a range of about 108,000 kilometers. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. The two scans, as this JHU/APL news release explains, were taken about fifteen minutes apart and merged into a 'data cube' -- a three-dimensional array covering the hemisphere New Horizons...
Starship Thinking
It's been awhile since I've seen Ian Crawford (Birkbeck College, London) -- I think we last talked at one of the 100 Year Starship events -- but I'm pleased to see his latest popular essay How to build a starship - and why we should start thinking about it now. A professor of planetary sciences and advocate of manned space exploration here in the Solar System, Crawford takes on the necessary task of acquainting a larger audience with something Robert Forward put forth as a maxim: 'Starflight is difficult and expensive, but not impossible.' Following decades of work on beamed sail technologies, antimatter and space tethers, Forward wrote that line in 1996, but it summed up statements he had been making for decades. Gregory Matloff and Eugene Mallove would echo him in their Starflight Handbook (Wiley, 1989), with an emphasis on the 'difficult' aspect of the journey: "Starflight is not just very hard, it is very, very, very hard!" So I guess we could say starflight is hard3. Matloff,...
Bradley Schaefer: A Response to Michael Hippke
The question of a gradual dimming of KIC 8462852 continues to make waves, the most recent response being Michael Hippke's preprint on the arXiv site, discussed in the post immediately below. Bradley Schaefer (Lousiana State University), who published his work on the dimming he found in now digitized photographs in the archives of Harvard College Observatory, disagrees strongly with Hippke's findings and is concerned that the paper impugns the solid work being performed by DASCH (Digital Access to a Sky Century@Harvard). Below is Dr. Schaefer's response with details on the astrophotographic photometry at the heart of the issue. by Bradley E. Schaefer A few hours ago, Michael Hippke posted a manuscript to arXiv (http://arxiv.org/abs/1601.07314), and submitted the same manuscript to the Astrophysical Journal Letters (ApJLett). This manuscript claims to have found that the DASCH data produces light curves with secular trends (both systematic dimmings and brightenings) over the...
KIC 8462852: No Dimming After All?
As if the Kepler star KIC 8462852 weren't interesting enough, Bradley Schaefer (Louisiana State) added to the controversy when he discovered what appeared to be a steady dimming of the star over the past century. Schaefer called the result "completely unprecedented for any F-type main sequence star," and given the discussion about KIC 8462852 as a SETI target, this raised the stakes. Something just as odd as the object's strange lightcurves was going on here, and it seemed natural to think that the dimming and the lightcurves were related. But Michael Hippke now begs to disagree. An old friend of Centauri Dreams (see, for example, his Exomoons: A Data Search for the Orbital Sampling Effect and the Scatter Peak), Hippke takes a close look at Schaefer's work and reaches a different conclusion. As he sees it, the 'dimming' of up 0.165 ± 0.013 magnitudes per century in this F3 star may actually be the result of imperfect calibration on the Harvard plates. In other words, while the...
In Search of the First Rocket Man
If you're interested enough in space to be reading this site, you've probably run into the name of Wan Hu. He's the subject of a tale that may well be spurious, but it's certainly lively. It seems that some time around the year 1500 AD, Wan Hu took his fascination with rocketry to the logical limit by building a chair equipped with 47 gunpowder rockets. Lit by 47 attendants, the combined rockets took Wan Hu somewhere, but just where is unknown, as he is said to have disappeared with a loud bang, leaving only a pall of smoke hanging over the scene. The first rocket man? Maybe. But experts on science in China find it more likely that the tale was invented somewhere in Europe, during a period (17th-19th century) when Chinese motifs were much in vogue. Frank Winter (National Air and Space Museum, Washington DC) did his own investigation and could find no mention of Wan Hu in Ming Dynasty biographical guides or histories. And apparently there are variants involving not Wan Hu but 'Wang...