Is it possible to use natural phenomena to boost signals to the stars? In the essay below, Bill St. Arnaud takes a look at the possibilities, noting that civilizations that chose to broadcast information might select a method that mimics by electromagnetic means what the classic von Neumann probe would achieve with physical probes. St. Arnaud is an optical communications engineer, a network and green IT consultant who works with clients on a variety of subjects such as next generation research/education and Internet networks. His interest in practical solutions -- free broadband and dynamic charging of electric vehicles -- to reduce greenhouse gas emissions is matched by a fascination with interstellar matters, particularly SETI. By Bill St. Arnaud In their recent post on Centauri Dreams Roger Guay and Scott Guerin (https://centauri-dreams.org/?p=36802) make a compelling argument that fading electromagnetic halos may be all that's left for us to discover of an extraterrestrial...
A Contact between Civilizations in the 19th Century
When we contemplate contact scenarios between ourselves and extraterrestrial civilizations, we can profit from remembering our own history. The European arrival in the Americas is often a model, but there are other events of equal complexity. In the essay below, Michael Michaud looks at America's encounter with Japan to examine how we might react to a civilization not vastly more advanced in technology than our own. A familiar figure on Centauri Dreams, Michaud is now retired from an extensive diplomatic career that took him from director of the U.S. State Department's Office of Advanced Technology to chairman of working groups at the International Academy of Astronautics that discuss SETI issues, along with posts as Counselor for Science, Technology and Environment at U.S. embassies in Paris and Tokyo. He is also the author of the seminal Contact with Alien Civilizations (Springer, 2007). By Michael A.G. Michaud In the literature about possible future contact with an...
Wolf 1061 Unlikely to Host Habitable Worlds
A key way to learn more about a given exoplanet is to home in on the properties of its star. So argue Stephen Kane (San Francisco State University) and colleagues in a new paper slated for the Astrophysical Journal. The star in question is Wolf 1061 (V2306 Ophiuchi), an M-class red dwarf some 13.8 light years away in the constellation Ophiuchus. In December of 2015, Australian astronomers announced the discovery of three planets around the star. Drawn out of data from the HARPS spectrograph at La Silla, the planets are all super-Earths, their radial velocity data supplemented with eight years of photometry from the All Sky Automated Survey. All three seem likely to be rocky planets, but firming this up would take transits, which the discovery team at the University of New South Wales estimated might occur, with a likelihood of about 14 percent for the inner world, dropping to 3% for the outer. Kane and team investigate the transit question in light of the fact that that two recent...
PROCYON: An Overview of Cometary Water
The Japanese PROCYON spacecraft (Proximate Object Close flyby with Optical Navigation) has just given us an interesting case of repurposing a scientific instrument, not to mention drawing value out of a mission whose initial plans had gone awry. Launched together with JAXA's Hayabusa 2 probe in late December of 2014, PROCYON was to have flown by asteroid 2000 DP107 in 2016, but a malfunctioning ion thruster put an end to that plan. Fortunately, PROCYON carried LAICA, a telescope that was put to use to study the Earth's geocorona (the outermost layer of the atmosphere). Developed at Japan's Rikkyo University, LAICA observes emissions from hydrogen atoms, a useful capability when turned to comet studies, as a team of researchers has now done with comet 67P/Churyumov-Gerasimenko. Water being the most abundant cometary ice, its release rate helps map activity on the comet and offers clues to how water was incorporated into comets in the early Solar System. Image: The PROCYON spacecraft...
Probing the Surface of Ceres
It doesn't stretch credulity to hypothesize that the early Earth benefited from an influx of comet and asteroid material that contributed water and organic compounds to its composition. The surface of a world can clearly be affected by materials from other bodies in the Solar System. Now we're learning that the dwarf planet Ceres may have a surface dusted by material from asteroid impacts. The findings come from a team of astronomers investigating Ceres with SOFIA, the airborne Stratospheric Observatory for Infrared Astronomy. The observatory is a highly modified 747SP aircraft carrying a 2.5m reflecting telescope. The study shows that not just Ceres but other asteroids and dwarf planets may be coated with asteroid fragments, a result that adjusts our view of Ceres' surface composition. After all, what we're looking at may simply be the result of asteroid impacts in the early days of the Solar System's formation. Three quarters of all asteroids, including Ceres, have been classified...
Jupiter in the Public Eye
Have a look at Jupiter as seen by the Juno spacecraft on its third close pass. A view as complex as the one below reminds us how images can be manipulated to bring out detail. This happens so frequently in astronomical images that it's easy to forget this view is not necessarily what the human eye would see, and we always have to check to find out how a given image was processed. In this case, we're looking at the work of a 'citizen scientist,' one Eric Jorgensen, who enhanced a JunoCam image to highlight the cloud movement. Image: This amateur-processed image was taken on Dec. 11, 2016, at 1227 EST (1727 UTC), as NASA's Juno spacecraft performed its third close flyby of Jupiter. At the time the image was taken, the spacecraft was about 24,400 kilometers from the gas giant planet. Credit: NASA/JPL-Caltech/SwRI/MSSS/Eric Jorgensen. The image shows a region of Jupiter southeast of what is known as the 'pearl,' one of eight rotating storms at 40 degrees south latitude on the planet, a...
A Vision to Bootstrap the Solar System Economy
Early probes are one thing, but can we build a continuing presence among the stars, human or robotic? An evolutionary treatment of starflight sees it growing from a steadily expanding presence right here in our Solar System, the kind of infrastructure Alex Tolley examines in the essay below. How we get to a system-wide infrastructure is the challenge, one analyzed by a paper that sees artificial intelligence and 3D printing as key drivers leading to a rapidly expanding space economy. The subject is a natural for Tolley, who is co-author (with Brian McConnell) of A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2016). An ingenious solution to cheap transportation among the planets, the Spacecoach could readily be part of the equation as we bring assets available off-planet into our economy and deploy them for even deeper explorations. Alex is a lecturer in biology at the University of California, and has been a Centauri Dreams regular for as long as I...
A Possible Planet Hidden in the Data
One of the great joys of science is taking something that seems beyond reach and figuring out a way to do it. We can use a coronagraph, for example, to screen out much of the light of a star to see planets around it, but coronagraphs can only do so much, as planets too near the star are still hidden from view. Now scientists have used an unusual observation to deduce information about one such hidden planet and its interactions with a circumstellar disk. Announced at the recent meeting of the American Astronomical Society, the work involves 18 years of archival observations with the Hubble Space Telescope, which have yielded an intriguing shadow sweeping across the disk of the TW Hydrae system. We're evidently looking at a young planetary system in formation, as the star -- slightly less massive than the Sun and about 192 light years away in the constellation Hydra -- is only about 8 million years old. Helpfully for our work, the TW Hydrae disk is seen face-on from our perspective....
A New Context for Complex Life
We normally think of the appearance of oxygen on Earth in terms of a 'great oxygenation event,' sometimes referred to as the 'oxygen catastrophe' or 'great oxidation.' Here oxygen begins to emerge in the atmosphere about 2.3 billion years ago as oceanic cyanobacteria produce oxygen by photosynthesis. The actual oxygenation event would be the point when oxygen is not all chemically captured but becomes free to escape into the atmosphere. It's a straightforward picture -- we move from a lack of oxygen to gradual production through photosynthesis and then a concentration strong enough to destroy many anaerobic organisms, an early and huge extinction event as life on our planet adjusted to the new balance. But a team of researchers led by Michael Kipp (University of Washington) has produced a paper showing a much more complicated emergence of oxygen, one that produced a surge in oxygenation that lasted a quarter of a billion years before easing. Kipp and team studied oxygen in the...
Galactic Interaction: Rivers of Stars
Discovered as recently as 1994, the Sagittarius dwarf spheroidal galaxy is a satellite of the Milky Way, and one with an interesting history. One of the nearest of the dwarf galaxies, the Sagittarius dwarf lies 25 kiloparsecs (roughly 82,000 light years) from the center of the Milky Way, and has passed through the disk of the parent galaxy more than once. The result: We see what a new paper on this object calls a ‘stream of tidally stripped stars’ that wraps completely around the celestial sphere. Our own Sun, in fact, is close enough to the Sgr galaxy’s orbital plane that it lies within the width of what can be called the debris tail. What astronomers would like to do is to reconstruct the orbital history of this interesting dwarf galaxy, something Marion Dierickx (Harvard-Smithsonian Center for Astrophysics), working with her PhD advisor Avi Loeb (Harvard) have now managed through computer simulations. Dierickx and Loeb simulated the movements of the Sgr dwarf for the past 8...
Inconstant Moons: A New Lunar Origin Scenario
A recent snowfall followed by warming temperatures produced a foggy night recently, one in which I was out for my usual walk and noticed a beautiful Moon trying to break through the fog layers. The scene was silvery, almost surreal, the kind of thing my wife would write a poem about. For my part, I was thinking about the effect of the Moon on life, and the theory that a large single moon might have an effect on our planet’s habitability. Perhaps its presence helps to keep Earth’s obliquity within tolerable grounds, allowing for a more stable climate. But that assumes we’ve had a single moon all along, or at least since the ‘big whack’ the Earth sustained from a Mars-sized protoplanet that may have caused the Moon’s formation. Is it possible the Earth has had more than one moon in its past? It’s an intriguing question, as witness a new paper in Nature Geoscience from researchers at the Technion-Israel Institute of Technology and the Weizmann Institute of Science. The paper suggests...
A New Look at ‘Exocomets’
Moving groups are collections of stars that share a common origin, useful to us because we can study a group of stars that are all close to each other in age. Among these, the Beta Pictoris moving group is turning out to be quite productive for the study of planet formation. These are young stars, aged in the tens of millions of years (Beta Pictoris itself is between 20 and 26 million years old). Within the moving group, we've detected planets around 51 Eridani and Beta Pictoris, while infalling, star-grazing objects have been found around Beta Pictoris. Evidence of comet activity around another of these stars was discussed at the American Astronomical Society meeting in Texas. The star HD 172555, 23 million years old and about 95 light years from Earth, shows the presence of the vaporized remnants of cometary nuclei, marking the third extrasolar system where such activity has been traced. All the stars involved are under 40 million years old, giving us a glimpse of the kind of...
Hubble Looks at Voyager’s Future
Nothing built by humans has ever gotten as far from our planet as Voyager 1, which is now almost 21 billion kilometers from Earth. We've talked about the future of both Voyagers before in these pages -- Voyager 1 passes within about 1.6 light years of the star Gliese 445 in some 40,000 years, its closest approach to a neighboring star. Voyager 2, which is now almost 17 billion kilometers out, closes to within 1.7 light years of Ross 248 in the same 40,000 years. My case for doing what Carl Sagan once discussed, giving each Voyager a final kick with its remaining hydrazine, so that those closing distances could be reduced, can be found in Voyager to a Star. It would be a symbolic and philosophical act rather than a scientific one, as both Voyagers are losing their ability to transmit data and will be silent in about a decade. And nothing can reduce those huge timeframes, which means that any such symbolic statement would be made to the future, a way of saying we are learning to be a...
Upgraded Search for Alpha Centauri Planets
Breakthrough Starshot, the research and engineering effort to lay the groundwork for the launch of nanocraft to Alpha Centauri within a generation, is now investing in an attempt to learn a great deal more about possible planets around these stars. We already know about Proxima b, the highly interesting world orbiting the red dwarf in the system, but we also have a K- and G-class star here, either of which might have planets of its own. Image: The Alpha Centauri system. The combined light of Centauri A (G-class) and Centauri B (K-class) appears here as a single overwhelmingly bright 'star.' Proxima Centauri can be seen circled at bottom right. Credit: European Southern Observatory. To learn more, Breakthrough Initiatives is working with the European Southern Observatory on modifications to the VISIR instrument (VLT Imager and Spectrometer for mid-Infrared) mounted at ESO's Very Large Telescope (VLT). Observing in the infrared has advantages for detecting an exoplanet because the...
Garnet World: Stellar Composition & Planetary Outcomes
What effect does the composition of a star have on the planets that form around it? Enough of one that we need to take it into account as we assess exoplanets in terms of astrobiology. So says a study that was presented at the American Astronomical Society meeting in Texas last week, looking at ninety specific stars identified by Kepler as having evidence of rocky planets. We know about the composition of these stars because they are part of the 200,000 star dataset compiled by APOGEE, the Apache Point Observatory Galactic Evolution Experiment spectrograph mounted on the 2.5m Sloan Foundation telescope in New Mexico. APOGEE allows us to examine the spectra of stellar atmospheres to identify their elements. Modeling the formation of planets around these stars shows us the implications for astrobiology. Johana Teske (Carnegie Observatories) explains: "Our study combines new observations of stars with new models of planetary interiors. We want to better understand the diversity of...
NASA Selects Two Asteroid Missions
Among the five finalists for NASA's Discovery program, I had become attached to the Near Earth Object Camera (NEOCam), whose purpose was to expand our catalog greatly, with the potential, according to mission backers, of finding ten times more NEOs than we've found to date. We'll see if NEOCam has a future (I've just learned that it has been given extended funding for an additional year by NASA), but for now NASA has announced two other Discovery-class missions, both of which have objectives among the asteroids. Lucy, scheduled for a launch in the fall of 2021, is to be a robotic mission with the goal of exploring six of the Jupiter Trojan asteroids. The Trojans share Jupiter's orbit while moving swarm-like around the planet's L4 and L5 Lagrangian points. Over 6000 Jupiter Trojans are now known, but the population is thought to be vast, with as many as 1 million Trojans larger than 1 kilometer in diameter. As to their origin, there is much to learn. They may be captured asteroids or...
Pinpointing a Fast Radio Burst
Fast Radio Bursts (FRBs) are problematic. Since their discovery about a decade ago, the question has been their place of origin. These transient pulses last no more than milliseconds, yet they emit enormous energies, and we've had only the sketchiest idea where they came from. Now we learn, from an announcement at the 229th meeting of the American Astronomical Society in Grapevine, Texas, that a repeating source of FRBs has been spotted. That makes tracing the burst back to its source and characterizing it an ongoing proposition. "We now know that this particular burst comes from a dwarf galaxy more than three billion light-years from Earth," says Shami Chatterjee, of Cornell University. "That simple fact is a huge advance in our understanding of these events." Papers on the work are being presented in Nature as well as Astrophysical Journal Letters. Research behind the investigation of FRB 121102 has been mounted by an international team of astronomers, representing a spread of...
Hitchhiker to the Outer System?
Years ago at the Aosta conference on interstellar studies, Greg Matloff told attendees about an interesting way to travel the Solar System. If the goal is to get to Mars, for example, it turns out that there are two objects -- 1999YR14 and 2007EE26 -- that pass close to both Earth and Mars, each with transit time of about a year. Let me quote from Greg's paper: Since orbital characteristics are known for a few thousand NEOs, it is reasonable to assume that about 0.1% of the total NEO population could be applied for Earth-Mars or Mars-Earth transfers during the time period 2020-2100. Because a few hundred thousand NEOs must exist that are greater in dimension than 10m, hundreds of small NEOs must travel near-Hohmann trajectories between Earth and Mars or Mars and Earth. It seems likely that a concerted search will find one or more candidate NEOs for shielding application during any opposition of the two planets. The notion is provocative. Could we somehow hitch a ride on one of these...
Close Look at Recent EmDrive Paper
The concluding part of the Tau Zero Foundation's examination of what is being called the 'EmDrive' appears today. It's a close analysis of the recent paper by Harold 'Sonny' White and Paul March in the Journal of Propulsion and Power. Electrical engineer George Hathaway runs Hathaway Consulting Services, which has worked with inventors and investors since 1979 via an experimental physics laboratory near Toronto, Canada. Hathaway's concentration is on novel propulsion and energy technologies. He has authored dozens of technical papers as well as a book, is a patent-holder and has hosted and lectured at various international symposia. Hathaway Consulting maintains close associations with advanced physics institutions and universities in the US and Europe. Those familiar with our Frontiers of Propulsion Science book will know his paper on gravitational experiments with superconductors, which closely examined past methods and cast a skeptical eye on early claims of anomalous forces (an...