How likely are we to find a definitive biosignature once we begin analyzing the atmospheres of nearby rocky exoplanets? We have some ideal candidates, after all, with stars like TRAPPIST-1 yielding not one but three potentially life-bearing worlds. The first thing we'll have to find out is whether any of these planets actually have atmospheres, and what their composition may be. 'Habitable zone' is a fluid concept, and that's not just a reference to liquid water on the surface. A relatively dry terrestrial planet, one with little surface water and not a lot of water vapor in the atmosphere, might avoid a runaway greenhouse and manage to stay habitable in an orbit closer to a G-class star than Earth. A planet with an atmosphere dominated by hydrogen could maintain warm temperatures even at 10 AU and beyond. So we'll need to find out what any exoplanet atmosphere is made of, and weigh that against its orbital position near its star. Image: An extended habitable zone that captures some...
To See a Habitable World
Video presentations from the recent Tennessee Valley Interstellar Workshop are beginning to appear online. It's welcome news for those of us who believe all conferences should be available this way, and a chance for Centauri Dreams readers to home in on particular presentations of interest. I published my Closing Remarks at TVIW right after the meeting and will watch with interest as the complete 2017 videos now become available. There are a number of these I'd like to see again. All of this gets me by round-about way to Project Blue, the ongoing attempt to construct a small space telescope capable of directly imaging an Earth-like planet around Centauri A or B, if one is indeed there. For the other talk I gave at TVIW 2017 (not yet online) had to do with biosignatures, and the question of whether we had the capability of detecting one in the near future with the kind of missions now approved and being prepared for launch. This was delivered as part of a presentation and panel...
An Interstellar Visitor?
An object called A/2017 U1, whether it is an asteroid or a comet, is drawing attention because it seems to be an interstellar wanderer. Discovered on October 19 by the University of Hawaii's Pan-STARRS 1 telescope on Haleakala, the object was quickly submitted to the Minor Planet Center by Rob Weryk (University of Hawaii Institute for Astronomy, IFA). Weryk was subsequently able to identify the object in Pan-STARRS imagery from the previous night. Image: This animation shows the path of A/2017 U1, which is an asteroid -- or perhaps a comet -- as it passed through our inner solar system in September and October 2017. From analysis of its motion, scientists calculate that it probably originated from outside our Solar System. Credit: NASA/JPL-Caltech. Thus a nightly search for near-Earth objects may have uncovered an object whose origins lie much further away. A/2017 U1 is about 400 meters in diameter and on a highly unusual trajectory, one that fits neither an asteroid or comet from...
Planet Formation in Cometary Rings
Just how do you go about building a 'super-Earth'? One possibility may be emerging in the study of young debris disk systems with thin, bright outer rings made up of comet-like bodies. Three examples are under scrutiny in work discussed at the recent American Astronomical Society's Division for Planetary Sciences meeting in Provo, Utah. Here, Carey Lisse (JHU/APL) described his team's results in studying the stars Fomalhaut, HD 32297 and HR 4796A. What the scientists are finding is that dense rings of comets can become a construction zone for planets of super-Earth size. The makeup of the material in these ring systems varies, from two that are rich in ice (Fomalhaut and HD 32297) to one that is depleted in ice but rich in carbon (HR 4796A). Take a look at the image below, showing the ring surrounding HR 4796A, and you'll see how strikingly tight the band of dust around this relatively young stellar system is. Image: Gemini Planet Imager observations reveal a complex pattern of...
Probing General Relativity with Neutron Stars
Another of those 'new eras' I talked about in yesterday's post is involved in the latest news on gravitational waves. Let's not forget that it was 50 years ago -- on November 28, 1967 -- that Jocelyn Bell Burnell and Antony Hewish observed the first pulsar, now known to be a neutron star. It made the news at the time because the pulses, separated by 1.33 seconds, raised a SETI possibility, leading to the playful designation LGM-1 ('little green men') for the discovery. We've learned a lot about pulsars emitting beams at various wavelengths since then and the SETI connection is gone, but before I leave the past, it's also worth recognizing that our old friend Fritz Zwicky, working with Walter Baade, first proposed the existence of neutron stars in 1934. The scientists believed that a dense star made of neutrons could result from a supernova explosion, and here we might think of the Crab pulsar at the center of the Crab Nebula, an object whose description fits the pioneering work of...
A Deep Data Dive for Gravitational Lenses
We seem to be entering 'new eras' faster than I can track. Certainly the gravitational wave event GW170817 demonstrates how exciting the prospects for this new kind of astronomy are, with its discovery of a neutron star merger producing a heavy-metal seeding 'kilonova.' But remember, too, how early we are in the exoplanet hunt. The first exoplanets ever detected were found as recently as 1992 around the pulsar PSR B1257+12. Discoveries mushroom. We've gone from a few odd planets around a single pulsar to thousands of exoplanets in a mere 25 years. We're seeing changes that propel discovery at an extraordinarily fast pace. Look throughout the spectrum of ideas and you can also see that we're applying artificial intelligence to huge datasets, mining not only recent but decades-old information for new insights. Today's problem isn't so much data acquisition as it is data storage, retrieval and analysis. For the data are there in vast numbers, soon to be augmented by huge new telescopes...
On the Merger of Neutron Stars
I had thought to go straight back into current news after Centauri Dreams' recent hiatus, but that's never a fully satisfactory solution, especially when major events happen while I'm away. I don't want to simply repeat what everyone has already read about the gravitational wave event GW170817, but there are a few things that caught my eye that we can discuss this morning. After all, we're dealing with a new phenomenon -- kilonovae -- that has been predicted but never observed. Nor have we ever before tied gravitational wave events to visible light. Image: Artist's impression of merging neutron stars. Credit: ESO. Now we're seeing the combination of gravitational wave and electromagnetic astronomy in what promises to be a fertile new ground of study. The fifth GW event ever observed, GW170817 was detected on August 17 of this year by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the US, working with the Virgo Interferometer in Italy. In less than two seconds, the...
Robotic Asteroid Mining: Bootstrapping the Solar System Economy
Centauri Dreams returns with an essay by long-time contributor Alex Tolley. If we need to grow a much bigger economy to make starships possible one day, the best way to proceed should be through building an infrastructure starting in the inner Solar System and working outward. Alex digs into the issues here, starting with earlier conceptions of how it might be done, and the present understanding that artificial intelligence is moving at such a clip that it will affect all of our ventures as we transform into a truly space-faring species. Under the microscope here is a company called SpaceFab, as Alex explains below, and the potential of ISRU -- in situ resource utilization. Emerging out of all this is a new model for expansion. by Alex Tolley "Asteroid Facility" - Syd Mead To sail the heavens and reach the stars is extremely expensive. With the technologies we can currently envisage, Earth's GDP will need to be orders of magnitude larger to support a starship program....
Closing Remarks at TVIW 2017
I know I said I wouldn't post for a bit, but because I've just given my closing remarks at the Tennessee Valley Interstellar Workshop, they are ready to go for publication, and I thought I would go ahead and publish them here. I did much of the actual writing for this at the conference (where I still am), so there may be a few typos. I haven't inserted the affiliations of the speakers, either, but I'd like to go ahead and get this up. My plan, once I've taken care of other obligations in the next ten days or so, is then to return to TVIW with greater focus and look at specific papers that caught my eye and the ways they fit in with the larger interstellar picture. For more background on the speakers here until then, check the TVIW 2017 Symposium page. I also didn't mention the excellent workshop sessions in this talk because they had just been summarized immediately before my own talk. But more on them as well as other TVIW observations when I return to regular Centauri Dreams posts....
Posting Slowdown
An interruption that can't be avoided. I never realized that so many non-Centauri Dreams obligations were about to converge this fall, but it's now clear I won't be able to keep the site stocked with new stories for the next couple of weeks. I'll do my best to keep up with comment moderation during this period, though there may be interruptions. See you later in the month when things get a bit more normal.