Video presentations from the recent Tennessee Valley Interstellar Workshop are beginning to appear online. It's welcome news for those of us who believe all conferences should be available this way, and a chance for Centauri Dreams readers to home in on particular presentations of interest. I published my Closing Remarks at TVIW right after the meeting and will watch with interest as the complete 2017 videos now become available. There are a number of these I'd like to see again. All of this gets me by round-about way to Project Blue, the ongoing attempt to construct a small space telescope capable of directly imaging an Earth-like planet around Centauri A or B, if one is indeed there. For the other talk I gave at TVIW 2017 (not yet online) had to do with biosignatures, and the question of whether we had the capability of detecting one in the near future with the kind of missions now approved and being prepared for launch. This was delivered as part of a presentation and panel...
An Interstellar Visitor?
An object called A/2017 U1, whether it is an asteroid or a comet, is drawing attention because it seems to be an interstellar wanderer. Discovered on October 19 by the University of Hawaii's Pan-STARRS 1 telescope on Haleakala, the object was quickly submitted to the Minor Planet Center by Rob Weryk (University of Hawaii Institute for Astronomy, IFA). Weryk was subsequently able to identify the object in Pan-STARRS imagery from the previous night. Image: This animation shows the path of A/2017 U1, which is an asteroid -- or perhaps a comet -- as it passed through our inner solar system in September and October 2017. From analysis of its motion, scientists calculate that it probably originated from outside our Solar System. Credit: NASA/JPL-Caltech. Thus a nightly search for near-Earth objects may have uncovered an object whose origins lie much further away. A/2017 U1 is about 400 meters in diameter and on a highly unusual trajectory, one that fits neither an asteroid or comet from...
Planet Formation in Cometary Rings
Just how do you go about building a 'super-Earth'? One possibility may be emerging in the study of young debris disk systems with thin, bright outer rings made up of comet-like bodies. Three examples are under scrutiny in work discussed at the recent American Astronomical Society's Division for Planetary Sciences meeting in Provo, Utah. Here, Carey Lisse (JHU/APL) described his team's results in studying the stars Fomalhaut, HD 32297 and HR 4796A. What the scientists are finding is that dense rings of comets can become a construction zone for planets of super-Earth size. The makeup of the material in these ring systems varies, from two that are rich in ice (Fomalhaut and HD 32297) to one that is depleted in ice but rich in carbon (HR 4796A). Take a look at the image below, showing the ring surrounding HR 4796A, and you'll see how strikingly tight the band of dust around this relatively young stellar system is. Image: Gemini Planet Imager observations reveal a complex pattern of...
Probing General Relativity with Neutron Stars
Another of those 'new eras' I talked about in yesterday's post is involved in the latest news on gravitational waves. Let's not forget that it was 50 years ago -- on November 28, 1967 -- that Jocelyn Bell Burnell and Antony Hewish observed the first pulsar, now known to be a neutron star. It made the news at the time because the pulses, separated by 1.33 seconds, raised a SETI possibility, leading to the playful designation LGM-1 ('little green men') for the discovery. We've learned a lot about pulsars emitting beams at various wavelengths since then and the SETI connection is gone, but before I leave the past, it's also worth recognizing that our old friend Fritz Zwicky, working with Walter Baade, first proposed the existence of neutron stars in 1934. The scientists believed that a dense star made of neutrons could result from a supernova explosion, and here we might think of the Crab pulsar at the center of the Crab Nebula, an object whose description fits the pioneering work of...
A Deep Data Dive for Gravitational Lenses
We seem to be entering 'new eras' faster than I can track. Certainly the gravitational wave event GW170817 demonstrates how exciting the prospects for this new kind of astronomy are, with its discovery of a neutron star merger producing a heavy-metal seeding 'kilonova.' But remember, too, how early we are in the exoplanet hunt. The first exoplanets ever detected were found as recently as 1992 around the pulsar PSR B1257+12. Discoveries mushroom. We've gone from a few odd planets around a single pulsar to thousands of exoplanets in a mere 25 years. We're seeing changes that propel discovery at an extraordinarily fast pace. Look throughout the spectrum of ideas and you can also see that we're applying artificial intelligence to huge datasets, mining not only recent but decades-old information for new insights. Today's problem isn't so much data acquisition as it is data storage, retrieval and analysis. For the data are there in vast numbers, soon to be augmented by huge new telescopes...
On the Merger of Neutron Stars
I had thought to go straight back into current news after Centauri Dreams' recent hiatus, but that's never a fully satisfactory solution, especially when major events happen while I'm away. I don't want to simply repeat what everyone has already read about the gravitational wave event GW170817, but there are a few things that caught my eye that we can discuss this morning. After all, we're dealing with a new phenomenon -- kilonovae -- that has been predicted but never observed. Nor have we ever before tied gravitational wave events to visible light. Image: Artist's impression of merging neutron stars. Credit: ESO. Now we're seeing the combination of gravitational wave and electromagnetic astronomy in what promises to be a fertile new ground of study. The fifth GW event ever observed, GW170817 was detected on August 17 of this year by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the US, working with the Virgo Interferometer in Italy. In less than two seconds, the...
Robotic Asteroid Mining: Bootstrapping the Solar System Economy
Centauri Dreams returns with an essay by long-time contributor Alex Tolley. If we need to grow a much bigger economy to make starships possible one day, the best way to proceed should be through building an infrastructure starting in the inner Solar System and working outward. Alex digs into the issues here, starting with earlier conceptions of how it might be done, and the present understanding that artificial intelligence is moving at such a clip that it will affect all of our ventures as we transform into a truly space-faring species. Under the microscope here is a company called SpaceFab, as Alex explains below, and the potential of ISRU -- in situ resource utilization. Emerging out of all this is a new model for expansion. by Alex Tolley "Asteroid Facility" - Syd Mead To sail the heavens and reach the stars is extremely expensive. With the technologies we can currently envisage, Earth's GDP will need to be orders of magnitude larger to support a starship program....
Closing Remarks at TVIW 2017
I know I said I wouldn't post for a bit, but because I've just given my closing remarks at the Tennessee Valley Interstellar Workshop, they are ready to go for publication, and I thought I would go ahead and publish them here. I did much of the actual writing for this at the conference (where I still am), so there may be a few typos. I haven't inserted the affiliations of the speakers, either, but I'd like to go ahead and get this up. My plan, once I've taken care of other obligations in the next ten days or so, is then to return to TVIW with greater focus and look at specific papers that caught my eye and the ways they fit in with the larger interstellar picture. For more background on the speakers here until then, check the TVIW 2017 Symposium page. I also didn't mention the excellent workshop sessions in this talk because they had just been summarized immediately before my own talk. But more on them as well as other TVIW observations when I return to regular Centauri Dreams posts....
Posting Slowdown
An interruption that can't be avoided. I never realized that so many non-Centauri Dreams obligations were about to converge this fall, but it's now clear I won't be able to keep the site stocked with new stories for the next couple of weeks. I'll do my best to keep up with comment moderation during this period, though there may be interruptions. See you later in the month when things get a bit more normal.
Project Blue: Looking for Terrestrial Worlds at Alpha Centauri
Eduardo Bendek's ACEsat, conceived at NASA Ames by Bendek and Ruslan Belikov, seemed to change the paradigm for planet discovery around the nearest stellar system. The beauty of Alpha Centauri is that the two primary stars present large habitable zones as seen from Earth, simply because the system is so close to us. The downside, in terms of G-class Centauri A and K-class Centauri B, is that their binary nature makes filtering out starlight a major challenge. Image: The Alpha Centauri system. The combined light of Centauri A (G-class) and Centauri B (K-class) appears here as a single overwhelmingly bright 'star.' Proxima Centauri can be seen circled at bottom right. Credit: European Southern Observatory. If we attack the problem from the ground, ever bigger instruments seem called for, like the European Southern Observatory's Very Large Telescope in conjunction with the VISIR instrument (VLT Imager and Spectrometer for mid-Infrared) that Breakthrough Initiatives is now working with...
On the GW170814 Gravitational Wave Detection
What we get with yesterday's gravitational wave announcement isn't a breakthrough in itself. After all, this is not the first but the fourth detection of a black hole merger, so as we enter the era of gravitational wave astronomy, we're beginning to build our catalog of exotic objects. But the gravitational wave known as GW170814 is significant because of the addition of the Virgo Gravitational-Wave Observatory to our toolkit. We ramp up our capabilities at locating the objects we detect in the sky when we factor in this new detector. Thus Chad Hanna (Penn State), who served as co-chair of the group within LIGO (Laser Interferometer Gravitational-Wave Observatory) that made all previous detections: "It is our hope to one day detect gravitational waves and to simultaneously observe the source of the gravitational waves with conventional telescopes so that we might learn even more about what causes the gravitational waves. In order to do that, we need to know where to look. LIGO and...
The Milky Way as an Outlier
How 'normal' is the Milky Way? It's an interesting question because as we look out into a visible universe filled with perhaps 100 billion galaxies, we base many of our models for their behavior on what we know of our own. That this may not be the best way to proceed is brought home by a much smaller study, the comparison between our Solar System and what we've been finding around other stars. Finding Solar System analogs has proven surprisingly difficult, although older models assumed outer gas giants and inner rocky worlds as a common pattern. Thus I am keeping an eye on a survey called Satellites Around Galactic Analogs (SAGA), which is looking into galaxies with smaller satellite galaxies. We're only in the early days of this survey, with eight galaxies now examined in a new paper from lead author Marla Geha (Yale University). But the goal is 100 galaxies, with 25 of these studied within the next two years. Image: A three-color optical image of a Milky Way sibling. Credit: Sloan...
A Statistical Look at Exoplanet Atmospheres
Comparative exoplanetology? That's the striking term that Angelos Tsiaras, lead author of a new paper on exoplanet atmospheres, uses to describe the field today. Kepler's valuable statistical look at a crowded starfield has given us insights into the sheer range of outcomes around other stars, but we're already moving into the next phase, studying planetary atmospheres. And as the Tsiaras paper shows, constructing the first atmospheric surveys. Tsiaras (University College, London) assembled a team of European researchers that examined 30 exoplanets, constructing their spectral profiles and analyzing them to uncover the characteristic signatures of the gases present. The study found atmospheres around 16 'hot Jupiters,' learning that water vapor was present in each of them. Says Tsiaras: "More than 3,000 exoplanets have been discovered but, so far, we've studied their atmospheres largely on an individual, case-by-case basis. Here, we've developed tools to assess the significance of...
A Binary Main-Belt Comet
The paper in Nature covering an object known as 288P lays out the case in its title: “A Main Belt Comet.” But what makes this story stand out is the fact that 288P is also a binary. A team of scientists led by Jessica Agarwal (Max Planck Institute for Solar System Research) discovered when 288P neared perihelion in September of 2016 that it was not one but two objects, asteroids of roughly the same mass and size, in a binary separated by about 100 kilometers. Moreover, they have verified that the small system is not quiescent. Using the Hubble instrument, Agarwal and colleagues discovered that the increased solar heating due to perihelion was producing sublimation of water ice, in much the same way that the tail of a comet is created. Here’s how the paper describes the process on 288P: Repeated activity near perihelion is a strong indicator of the sublimation of water ice due to increased solar heating. A model of the motion of the dust under the influence of solar gravity and...
Vintage Voyager: Online Video Resources
With Voyager on my mind because of its recent anniversary, I had been exploring the Internet landscape for archival footage. But Ioannis Kokkinidis made my search unnecessary with the following essay, which links to abundant resources. The author of several Centauri Dreams posts including Agriculture on Other Worlds, Ioannis holds a Master of Science in Agricultural Engineering from the Department of Natural Resources Management and Agricultural Engineering of the Agricultural University of Athens. He went on to obtain a Mastère Spécialisé Systèmes d'informations localisées pour l'aménagement des territoires (SILAT) from AgroParisTech and AgroMontpellier and a PhD in Geospatial and Environmental Analysis from Virginia Tech. Now a resident of Fresno CA, Ioannis tells us in addition how a lifelong interest in space exploration was fed by the Voyager mission and its continuing data return. by Ioannis Kokkinidis Introduction Back in the end of August 1989,...
New Horizons After 2014 MU69
If New Horizons can make its flyby of Kuiper Belt Object MU69 at a scant 3500 kilometers, our imagery and other data should be much enhanced over the alternative 10,000 kilometer distance, one being kept in reserve in case pre-encounter observations indicate a substantial debris field or other problems close to the object. But both trajectories, according to principal investigator Alan Stern, have been moved closer following a ten-week study period, and both are closer than the 12,500 kilometers the spacecraft maintained in its flyby of Pluto. Image: Artist's concept of Kuiper Belt object 2014 MU69, which is the next flyby target for NASA's New Horizons mission. Scientists speculate that the Kuiper Belt object could be a single body (above) with a large chunk taken out of it, or two bodies that are close together or even touching. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker. Stern made the statement in early September at a...
A Fleet of Sail-driven Asteroid Probes
One of the great values of the Kepler mission has been its ability to produce a statistical sample that we can use to analyze the distribution of planets. The population of asteroids in our own Solar System doubtless deserves the same treatment, given its importance in future asteroid mining as well as planetary protection. But when it comes to main belt asteroids, we're able to look up close, even though the number of actual missions thus far has been small. Thus it's heartening to see Pekka Janhunen (Finnish Meteorological Institute), long a champion of intriguing 'electric sail' concepts, looking into how we might produce just such an asteroid sampling through a fleet of small spacecraft. "Asteroids are very diverse and, to date, we've only seen a small number at close range. To understand them better, we need to study a large number in situ. The only way to do this affordably is by using small spacecraft," says Janhunen. The concept weds electric sails riding the solar wind with...
‘Red Edge’ Biomarkers on M-dwarf Planets
When we think about the markers of possible life on other worlds, vegetation comes to mind in an interesting way. We’d like to use transit spectroscopy to see biosignatures, gases that have built up in the atmosphere because of ongoing biological activity. But plants using photosynthesis offer us an additional option. They absorb sunlight from the visible part of the spectrum, but not longer-wavelength infrared light. The latter they simply reflect. What we wind up with is a possible observable for a directly imaged planet, for if you plot the intensity of light against wavelength, you will find a marked drop known as the ‘red edge.’ It shows up when going from longer infrared wavelengths into the visible light region. The red-edge position for Earth’s vegetation is fixed at around 700–760?nm. What we’d like to do is find a way to turn this knowledge into a practical result while looking at exoplanets. Where would we find the red edge on planets circling stars of a different class...
WASP-12b: A Low Albedo Planetary Torch
Sara Seager often describes the distribution of exoplanets as 'stochastic,' meaning subject to statistical analysis but hard to predict. A good thing, then, that Kepler has given us so much statistical data to work with, allowing us to see the range of possible outcomes when stars coalesce and planetary systems emerge around them. We're not seeing copies of our own Solar System when we explore other stellar systems, but a variegated mix of outcomes. Thus finding a planet with an albedo as dark as fresh asphalt goes down as yet another curiosity from a universe that yields them in great abundance. The planet is WASP-12b, a 'hot Jupiter' of the most extreme kind. Previous work on this heavily studied world has already shown that due to its proximity to its host star, the planet has been stretched into an egg shape, while its day-side temperatures reach 2540 degrees Celsius, or 2810 Kelvin. 94 percent of incoming visible light here is trapped in an atmosphere so hot that clouds cannot...
Cassini: JPL Images at the End
Image: A monitor shows the status of NASA's Deep Space Network as it receives data from the Cassini spacecraft, Friday, Sept. 15, 2017 in the Charles Elachi Mission Control Center in the Space Flight Operation Center at NASA's Jet Propulsion Laboratory in Pasadena, California. Credit: NASA/Joel Kowsky. Image: Cassini program manager at JPL, Earl Maize, center row, calls out the end of the Cassini mission. Credit: NASA/Joel Kowsky. Image: Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster embrace after the Cassini spacecraft plunged into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. At left is Cassini project scientist Linda Spilker. At right center is Jim Green, Director of NASA's Planetary Science Division. Credit: NASA/JPL-Caltech/Space Science Institute. Image: Saturn's active, ocean-bearing moon Enceladus sinks behind the giant planet in a farewell...