A Tidally Locked ‘Earth’?

Whether or not life can emerge on the planets of red dwarf stars remains an unknown, though upcoming technologies should help us learn more through the study of planetary atmospheres. Tidal locking always comes up in such discussions, an issue I always thought to be fairly recent, but now I learn that it has quite a pedigree. In a new paper from Rory Barnes, I learn that astronomers in the late 19th Century had concluded (erroneously) that Venus was tidally locked, and there followed a debate about the impact of synchronous rotation on surface conditions. As witness astronomer N. W. Mumford, who in 1909 questioned whether tidal friction wouldn't reduce half of Venus to a desert and annihilate all life there. Or E. V. Heward, who speculated that life could emerge on Venus despite tidal lock, and wrote in a 1903 issue of MacMillan's Magazine: ...that between the two separate regions of perpetual night and day there must lie a wide zone of subdued rose-flushed twilight, where the...

read more

Is the Term ‘Habitable Zone’ Viable?

I'm not much for changing the meaning of words. True, languages always change, some at a faster clip than others (contrast Elizabethan English with today's, though modern Icelandic is structurally very similar to the Old Norse of the sagas). But I love words and prefer to let linguistic variety evolve rather than be decreed. Even so, I get what Elizabeth Tasker is doing when she makes the case for exoplanet hunters to do away with the term 'habitable zone.' In a comment to Nature Astronomy, Tasker (JAXA) and quite a few colleagues point out just how misleading 'habitable zone' can be, given that when we find a new exoplanet, we usually only know the size of the planet (perhaps through radius, as in a transit study, or through minimum mass for radial velocity), and the amount of radiation the planet receives from its star. From such facts we can infer whether we're dealing with a gas giant or a rocky world. This is hardly enough on which to base a claim of habitability, but it gets...

read more

Tuning Up RV: A Test Case at Tau Ceti

The new work on Tau Ceti, which analyzes radial velocity data showing four planets there, looks to be a step forward in this workhouse method for planetary detection. With radial velocity, we're analyzing tiny variations in the movement of a star as it is affected by the planets around it. These are tiny signals, and the new Tau Ceti paper discusses working with variations as low as 30 centimeters per second. It's a good number, but we'll want better -- to detect a true Earth analog around a Sun-like star, we need to get this number into the 10 cm/s range. The planets detected in this work all come in at less than four Earth masses, and two of them are getting attention because they are located near the inner and outer edges of the habitable zone respectively. Tau Ceti has always drawn our attention, being relatively close (12 light years) and a solitary G-class Sun-like star. No wonder it and Epsilon Eridani were the two targets Frank Drake chose for Project Ozma when he launched...

read more

TRAPPIST-1: The Importance of Age

If life can arise around red dwarf stars, you would think TRAPPIST-1 would be the place to look. Home to seven planets, this ultracool M8V dwarf star about 40 light years away in Aquarius has been around for a long time. The age range in a new study on the matter goes from 5.4 billion years up to almost ten billion years. And we have more than one habitable zone planet to look at. Adam Burgasser (UC-San Diego) and Eric Mamajek (JPL) are behind the age calculations, which appear in a paper that has been accepted at The Astrophysical Journal. We have no idea how long it takes life to emerge, having only one example to work with, but it's encouraging that we find evidence for it very early in Earth's history, dating back some 3.8 billion years. But we also have much to learn about habitability around red dwarfs in general. Image: This illustration shows what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credit: NASA/JPL-Caltech. [PG note...

read more

Laser SETI in Context

I've been thinking about SETI all weekend, not only because I'm pulling material together for the Tennessee Valley Interstellar Workshop in October, but also because I've been keeping an eye on the Laser SETI campaign now running on Indiegogo. With five days to go, Laser SETI is four-fifths of the way to its goal. When I think about the effort in the context of SETI's history, its significance becomes ever more clear. Please give this campaign a look and help if you can. The context I'm talking about relates to how we do SETI in a tight budgetary environment. Although it is not involved today, NASA was once a player in early studies, funding the work that produced the proposal for Project Cyclops, an enormous radio telescope array that was never built, although the ensuing report, Project Cyclops: A Design Study of a System for Detecting Extraterrestrial Intelligent Life, had influence throughout the young SETI community. But SETI has always been controversial in some quarters, and...

read more

More Provocative Data on MU69

Knowing that he was busy in Australia, I hadn't thought that Alan Stern would get off a new report on New Horizons quite this fast (he wrote it over the Pacific on the flight back). But there's enough here that I want to supplement this week's earlier post about the three occultations of 2014 MU69, the distant Kuiper Belt Object toward which the spacecraft now moves at roughly a million kilometers a day. I'm also taken with an image in Stern's latest, seen below. What we're looking at is the spacecraft as it approaches what we now think may be a binary object, with the dense starfield in Sagittarius stretching out behind. Nice work by artist Carlos Hernandez. Image: Artist's concept of the New Horizons spacecraft flying by a possible binary MU69 on Jan. 1, 2019. Credit: Carlos Hernandez. The three occultations observed in June and July were examined in particular for evidence of debris, rings or other hazards that could cripple the spacecraft during the close approach. The encounter...

read more

Cassini as Atmospheric Probe

I'm going to miss the Cassini mission as much as anyone, but I have to say it's fascinating to watch how mission controllers are wringing good science out of every last moment of the spacecraft's life. We're now in the Grand Finale phase of the mission, in which Cassini has moved between the planet and its rings in a series of weekly dives. Now we're about to push into a new series of close passes, actually moving through Saturn's upper atmosphere. Notice the language that Linda Spilker, Cassini project scientist at the Jet Propulsion Laboratory, uses to describe what's next: "As it makes these five dips into Saturn, followed by its final plunge, Cassini will become the first Saturn atmospheric probe. It's long been a goal in planetary exploration to send a dedicated probe into the atmosphere of Saturn, and we're laying the groundwork for future exploration with this first foray." Image: This artist's rendering shows Cassini as the spacecraft makes one of its final five dives through...

read more

An Exoplanet with a Stratosphere

We're beginning to find stratospheres on planets around other stars. A new study based at NASA Ames has looked closely at WASP-121b, a 'hot Jupiter' in its most extreme form. This is a planet about 1.2 times as massive as Jupiter, but with a radius almost twice Jupiter's. The puffy world orbits its star in a scant 1.3 days (Jupiter, by contrast, circles the Sun every twelve years). As you would imagine, temperatures on WASP-121b are extreme, reaching 2500 degrees Celsius, which is enough to cause some metals to boil. A stratosphere is simply a layer within an atmosphere where temperature increases with higher altitudes. Exactly how do scientists determine whether a planet fully 900 light years from Earth has such a layer? The answer is in the signature of hot water molecules, observed here by examining how these molecules in WASP-121b's atmosphere react to specific wavelengths of light. The researchers used spectroscopic data from the Hubble instrument to make the call, knowing that...

read more

Tuning Up Asteroid Threat Mitigation

Some people tell me that the dangers posed by an asteroid or comet impact on Earth are over-publicized. Surely whatever object hits us would land some place harmless, causing nothing but a flurry of news stories. Others remind me that Chelyabinsk was seriously rattled by the explosion of a small asteroid in 2013, an event that could have created appalling damage with a slight deviation in trajectory. My own view is that guessing at the odds doesn't do much for us. I favor a strong research effort into asteroid deflection and risk mitigation strategies. Normally planetary protection wouldn't be high on the agenda on Centauri Dreams because I focus on deep space issues and our exploration possibilities far from Earth. But asteroid deflection merits our attention because I'm convinced it is one of the drivers for space research. Protecting the planet means learning not only how to deflect potentially risky objects but also how to detect them long before they pose a problem. The two work...

read more

MU69 Occultations Yield KBO Data

Back in June we tracked what the New Horizons team was doing to refine our knowledge of 2014 MU69, the Kuiper Belt Object toward which New Horizons is now moving (see New Horizons: Occultations in Preparation for MU69). There were actually three of these events, on June 3, July 10 and July 17 of this year, studied not only by team members on the ground in Argentina and South Africa but by observatories like SOFIA (the airborne Stratospheric Observatory for Infrared Astronomy) and the Hubble Space Telescope. Hubble and the European Space Agency's Gaia satellite were critical in calculating where the shadow of MU69 would fall. Learning more about the distant KBO is a key part of the encounter, given the possibilities of debris around MU69 in the upcoming flyby. You'll recall that the Pluto/Charon system was analyzed painstakingly in advance of the New Horizons flyby for the same reason. The occultations, in which the object passes in front of a distant star, allowed the team to take...

read more

An Astrobiological Role for Titan’s Complex Chemistry?

Although Titan is often cited as resembling the early Earth, the differences are striking. Temperature is the most obvious, with an average of 95 Kelvin (-178 degrees Celsius), keeping water at the surface firmly frozen. Our planet was tectonically active in its infancy, roiled not only by widespread volcanism but also asteroid impacts, especially during the period known as the Late Heavy Bombardment some 4.1 to 3.8 billion years ago. Throw in the fact that the Earth had high concentrations of carbon dioxide -- Titan does not -- and it's clear that we can't make too broad a comparison between the two worlds. What we do have on Titan, however, is an atmosphere that teems with chemical activity, fueled by light from the Sun and the charged particle environment in the moon's orbit around Saturn. So we do have a chemistry here that is capable of turning simple organics into more complex ones. Thus the findings from a new study of archival data using the Atacama Large...

read more

New Insights into Long-Period Comets

The Voyagers' continuing interstellar mission reminds us of how little we know about space just outside our own Solar System. We need to learn a great deal more about the interstellar medium before we venture to send fast spacecraft to other stars. And indeed, part of Breakthrough Starshot's feasibility check re small payloads and sails will be to assess the medium and determine what losses are acceptable for a fleet of such vehicles. The definitive work on the matter is Bruce Draine's Physics of the Interstellar and Intergalactic Medium, and thus it's no surprise that Draine has been involved as a consultant with Starshot. As we saw yesterday, we have only one spacecraft returning data from outside the heliosphere (soon to be joined by Voyager 2), making further precursor missions explicitly designed to study 'local' gas and dust conditions a necessity. Another reminder of the gaps in our knowledge comes from an analysis of WISE data. The Wide-field Infrared Survey Explorer...

read more

Go Voyager

It's worth thinking about why Voyager 1 and 2, now coming up on their 40th year of operation, are still sending back data. After all, mission longevity becomes increasingly important as we anticipate missions well outside the Solar System, and the Voyagers are giving us a glimpse of what can be done even with 1970's technology. We owe much of their staying power to their encounters with Jupiter, which demanded substantial protection against the giant planet's harsh radiation, a design margin still used in space missions today. The Voyagers were the first spacecraft to be protected against external electrostatic charges and the first with autonomous fault protection, meaning each spacecraft had the ability to detect problems onboard and correct them. We still use the Reed-Solomon code for spacecraft data to reduce data transmission errors, and we all benefited from Voyager's programmable attitude and pointing capabilities during its planetary encounters. Pioneer 6 was a doughty...

read more

Exomoons: Rare in Inner Stellar Systems?

Exomoons -- moons around planets in other star systems -- are an exhilarating and at the same time seemingly inevitable prospect. There is little reason to assume our Solar System is unique in its menagerie of moons, with the gas giants favoring us particularly with interesting mission targets, and then there's that fascinating double system at Pluto/Charon. If we visualize what we expect to find in any given stellar system, surely moons are part of the mix, and investigations like the Hunt for Exomoons with Kepler will doubtless find them. An actual exomoon detection would be a triumph for exoplanet science, especially given how recently it was that we nailed down the first confirmed exoplanet, 51 Pegasi b, in 1995 (or, if you prefer, the 1992 detection of terrestrial-mass planets orbiting the pulsar PSR B1257+12). We're new at this, and what huge strides we've made! Given the small size of the transit signal and its changing relation to the body it orbits, exomoons offer a...

read more

Stagnant Supercivilizations and Interstellar Travel

Just how long can a civilization live? It's a key question, showing up as a factor in the Drake Equation and possibly explaining our lack of success at finding evidence for ETI. But as Andrei Kardashev believed, it is possible that civilizations can live for aeons, curbed only by the resources available to them, opening up the question of how they evolve. In today's essay, Nick Nielsen looks at long-lived societies, asking whether they would tend toward stasis -- Clarke's The City and the Stars comes to mind -- and how the capability of interstellar flight plays into their choices for growth. Would we be aware of them if they were out there? Have a look at supercivilizations, their possible trajectories of development, and consider what such interstellar stagnation might look like to a young and questing species searching for answers. by J. N. Nielsen What are stagnant supercivilizations? As far as I know there are no precise definitions of supercivilizations, but this should not...

read more

Breakthrough Starshot ‘Sprites’ in Orbit

If Breakthrough Starshot succeeds in launching a fleet of tiny probes to Proxima Centauri in 30 or 40 years, their payloads will be highly miniaturized and built to specifications far beyond our capabilities today. But the small 'Sprites' launched into low Earth orbit on June 23 give us an idea where the research is heading. Sprites are 'satellites on a chip,' growing out of research performed by Mason Peck and his team at Cornell University, which included Breakthrough Starshot's Zac Manchester, who used a Kickstarter campaign to develop the concept in 2011 (see Sprites: A Chip-Sized Spacecraft Solution for background on the Cornell work). Breakthrough Starshot executive director Pete Worden refers to Sprites as 'a very early version of what we would send to interstellar distances,' a notion that highlights the enormity of the challenge while pointing to the revolutionary changes that may make such payloads possible. The issues multiply the more you think about them -- chip-like...

read more

InflateSail Tests Deployment & Deorbiting Technologies

Testing out new sail applications is part of a European project called RemoveDebris, which focuses on strategies for dealing with the enormous amount of junk that is piling up around the Earth. Run by the Surrey Space Center at the University of Surrey (UK) and the Von Karman Institute of Belgium, the work takes note of the fact that, from flecks of paint to inactive satellites to spent rocket boosters, our planet is orbited by about 7000 tonnes of material. If you want to visualize that amount, it's the equivalent of 583 London buses, according to this SSC news release. You may recall that in the film Gravity, a Space Shuttle is destroyed by space debris. But the issue is hardly confined to Hollywood imaginings. Jason Forshaw is Surrey Space Centre project manager on the RemoveDebris team: "Various orbits around the Earth that are commonly used for satellites and space missions are full of junk, which is a significant danger to our current and future spacecraft. Certain orbits -...

read more

SailBeam: A Conversation with Jordin Kare

Looking around on the Net for background information about Jordin Kare, who died last week at age 60 (see yesterday's post), I realized how little is available on his SailBeam concept, described yesterday. SailBeam accelerates myriads of micro-sails and turns them into a plasma when they reach a departing starship, giving it the propulsion to reach one-tenth of lightspeed. Think of it as a cross between the 'pellet propulsion' ideas of Cliff Singer and the MagOrion concept explored by Dana Andrews. So I thought this morning to offer you some thoughts about SailBeam and its genesis from the man himself. I interviewed Jordin back in early 2003 in a wide-ranging discussion that took in most aspects of his work. He was an easy interview -- all I had to do was offer the occasional nudge and he would take off. I found him engaging and hugely likeable. What follows is a fraction of the entire interview, the part that focuses primarily on SailBeam and a bit on Kare himself. I've edited it...

read more

Remembering Jordin Kare (1956-2017)

We've just lost a fine interstellar thinker. Jordin Kare has died of aortic valve failure at age 60. While Kare played a role in the Clementine lunar mapping mission and developed a reusable rocket concept in the 1990s that he thought could be parlayed into a space launch system (in typical Kare fashion, he called it "DIHYAN," for 'Do I Have Your Attention Now?'), it is through a laser sail system called SailBeam and a 'fusion runway' concept that he will most likely be remembered among those who study starflight. But he was also an active science fiction fan, 'filksinger' and poet whose name resonates wherever science fiction fans gather. To science fiction writer Jerry Pournelle, who remembered Kare to a small mailing list over the weekend, it was a song called 'Fire in the Sky' that first came to mind. The first verse: Prometheus, they say, brought God's fire down to man And we've caught it, tamed it, trained it since our history began Now we're going back to Heaven just to look...

read more

METI: A Response to Steven Johnson

Yesterday's post dwelt on an article by Steven Johnson in the New York Times Magazine that looked at the issue of broadcasting directed messages to the stars. The article attempted a balanced look, contrasting the goals of METI-oriented researchers like Douglas Vakoch with the concerns of METI opponents like David Brin, and fleshing out the issues through conversations with Frank Drake and anthropologist Kathryn Denning. Johnson's treatment of the issue prompted a response from a number of METI critics, as seen below. The authors, all of them prominent in SETI/METI issues for many years, are listed at the end of the text. We thank Steven Johnson for his thoughtful New York Times Magazine article, which makes it clear that there are two sides to the METI issue. We applaud his idea that humankind needs a mechanism for decision-making on long-term issues that could threaten our future. As Johnson implies, deliberately calling ourselves to the attention of a technological civilization...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives