Super-Earths, Magnetic Fields and Astrobiology

We'd like to know a lot more than we do about how planets create magnetic fields. After all, a major motivation for exoplanet research (though hardly the only one) is to find out whether there is other life in the universe. A magnetic field can protect planetary atmospheres from the effects of the host star's stellar wind, a stream of charged particles that could disrupt life's formation. Planets in close orbits of a central star are going to be particularly vulnerable. But if protecting a planetary surface as well as keeping its atmosphere intact are powerful factors in understanding its evolution, learning more about planetary magnetic fields isn't going to be easy. Consider a new paper from François Soubiran (École Normale Supérieure, Lyon) and Burkhard Militzer (UC-Berkeley). They're digging into the question of magnetic fields on super-Earths, in this case planets up to three times the mass of our own world. The scientists believe that magnetic fields could emerge here,...

read more

Beyond TESS: Looking Toward CHEOPS

As the exoplanet hunt deepens, we're seeing how research efforts build upon each other, and how the findings of one investigation play into the planning for another. Kepler candidate planets, for example, have been confirmed using ground-based telescopes in radial velocity investigations, giving an independent check that the putative world is really there. TESS (Transiting Exoplanet Survey Satellite) will find planets that refine the target list for the James Webb Space Telescope, with extremely large telescope technology already in the wings. What we sometimes forget is that this collaborative effort has already built up a healthy momentum. Having maxed out Kepler (and K2 was an outstanding rehabilitation of a damaged spacecraft), the operations of TESS will focus on bright, nearby stars. The momentum of TESS and its contributions to the upcoming JWST should remind us that we then have the European Space Agency's CHEOPS (CHaracterising ExOPlanet Satellite) mission queuing up for...

read more

CubeSats Deliver at Mars

I never saw the 2008 film WALL·E, which was all the rage not long after its release. A computer animated science fiction movie, WALL·E won a slew of awards including a Golden Globe for best animated feature, a Nebula for best script, and an Academy Award, as well as making Time's list of best movies of the decade. Bringing it to mind this morning, though, is the recent success of the InSight mission at landing on Mars, and the support technologies that flew with it. Thus the image below, which in its own way is iconic. It's from a craft nicknamed WALL·E after the star of the film, a CubeSat no larger than a briefcase that flew all the way to Mars in a seven month journey that demonstrated what miniaturized technologies can do. WALL·E is formally known as MARCO-B, the partner to MARCO-A (nicknamed EVE, another star of the film). Both these craft proved successful at their mission, which was to offer Earthside engineers the opportunity to monitor the InSight landing in ways that hadn't...

read more

Modeling Climates at TRAPPIST-1

It's a long name, but with the successful arrival of the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander on Mars, we now go to work on the planet's deep interior. With Centauri Dreams' deep space perspective, my thoughts quickly turn to other stellar systems. We've all seen how hard it is to land on Mars, and have looked up into the night sky to find the ruddy pinprick that marks its naked eye presence. Given our Solar System's scale, the task of getting humans to Mars looms as a major challenge. Image: Who can resist the first clear photo from a Mars mission? Not me. Credit: NASA. But suppose we were on a planet in the TRAPPIST-1 system. Here we have roughly Earth-sized planets packed into tight proximity around the parent red dwarf. TRAPPIST-1b is at 0.011 AU, while TRAPPIST-1c is at 0.015 AU. Even the most distant from the star, TRAPPIST-1h, orbits at 0.062 AU, so that these seven worlds are all closer to the host than Mercury in our...

read more

HR 8799c: Water Detection Moves Spectroscopy Forward

Some relatives of a friend recently made me realize how routine exoplanet discoveries have become to the public. These are anything but astronomy buffs, but they know that planets can be found without ever being seen. My acquaintances may not understand radial velocity or transits to any high degree, but they accept that the methods are there and have proven reliable. "Someday," said one, "I guess we'll actually see one of these planets." The image below came as a surprise when I showed it to them. Here we do see a planetary system, four actual planets around the star HR 8799 and not just jiggles in Doppler signals or dips in a lightcurve. For me, what's astonishing here is not only that we can see planets despite their proximity to the host, but that we've accomplished this with telescopes on the ground. Adaptive optics -- correcting for turbulence in the atmosphere that would distort an astronomical image, using a guide star as a reference -- is the tool that is opening a new era...

read more

An Encouraging Formation Scenario for Icy Moons

It makes sense that planets in other stellar systems would have moons, but so far it has been difficult to find them. That's why Kepler-1625b, about 8,000 light years out in the direction of Cygnus, is so interesting. As we noted last month, David Kipping and graduate student Alex Teachey have compiled interesting evidence of a moon around this gas giant, which is itself either close to or within the habitable zone of its star. The massive candidate exomoon is the size of Neptune, and if confirmed, would mark the first exomoon detection in our catalog. As the examination of Kepler-1625b and its transit timing variations continues, we have new work out of the University of Zürich, ETH Zürich and NCCR PlanetS that adds weight to the assumption that moons around large planets should be ubiquitous. Using computer simulations run at the Swiss National Supercomputing Centre (CSCS) in Lugano, a team of researchers led by Judit Szulágyi (University of Zurich and ETH Zurich) has determined...

read more

Puzzling Out Chariklo’s Rings

The outer system object called Chariklo doesn't get into the news all that much, so I'm glad that this morning I have the chance to give it its place in the Sun. 10199 Chariklo is a Centaur, moving between the orbits of Saturn and Uranus. With an estimated diameter of 250 kilometers, it's the largest Centaur known, and as far as I know, the first one known to have a ring system. Another Centaur, Chiron, is also suspected of having rings, but on the latter, researchers have not ruled out other explanations for the observed feature, like symmetrical jets of gas and dust. With Chariklo, we have data from a 2013 occultation of a distant star that revealed the existence of two rings, one 3 kilometers and the other about 7 kilometers wide, separated by about 9 kilometers. Chariklo's rings have even been given nicknames -- Olapoque for the larger, Chui for the smaller, both the names of Brazilian rivers, though the IAU will have the final say on such matters. Of particular interest since...

read more

AAVSO Exoplanet Archive for Amateur Astronomers

Even today, I can well understand the reaction that Dennis Conti had when confronted with the prospect of finding a planet around another star with nothing more than an amateur instrument. Conti, who founded and now chairs the Exoplanet Section of the American Association of Variable Star Observers, was a newcomer to the transit method just a few years ago. "I thought, there's no way for someone with a backyard telescope to detect a planet going around a distant star," he says, looking back from the vantage of one now immersed in such observations. My boyhood 3-inch reflector was not a backyard instrument -- too many trees back there. So it became a front-yard telescope. Absent the technological innovations of the past five decades, I could only imagine vast instruments for studying objects around other stars. The transit method in exoplanet detection was a long way off, but the idea of seeing not a planet itself but a change in starlight as the planet crossed the face of its host...

read more

Crater Beneath the Greenland Ice

A crater roughly the size of the area inside Washington DC's beltway has been found beneath the Greenland ice. On this, some thoughts, but first, a reminiscence. If you've ever driven the Capital Beltway at rush hour, you'll have some sense of the crater's size. My own experiences of it have been few, but the most memorable was the afternoon I spent at NASA Goddard Space Flight Center, where Greg Benford was speaking. We had agreed that after his talk, Greg and I would head out for dinner at a local restaurant, the exact venue to be determined later. It was about 5:00 PM when we were in the GSFC parking lot ready to go, now joined by Gloria Lubkin, editor emerita at Physics Today. With the help of Greg's nephew Dominic, we had chosen a French restaurant about 10 miles away. The problem: Greg and Gloria were in one car, I was in another, and it was rush hour. An out-of-towner who rarely got to DC, I was not remotely prepared for the beltway under these conditions. I had no smartphone...

read more

Spitzer Size Constraints on ‘Oumuamua

The first interstellar object detected in our own Solar System, 'Oumuamua has a pleasing name, translating from the Hawaiian as something like 'far visitor first to arrive,' or words to that effect. It's also proven a frustrating catch ever since detected by the University of Hawaii's Pan-STARRS 1 telescope on Haleakala, Hawaii during a search for near-Earth asteroids. We've put telescope resources on Earth and in space on the object, but our observing time is up. For 'Oumuamua is now well on its way out of the Solar System, so we're left to massage the data we have in hopes of gaining new insights. Davide Farnocchia (Center for Near Earth Object Studies, JPL) encapsulates the issue: "Usually, if we get a measurement from a comet that's kind of weird, we go back and measure it again until we understand what we're seeing. But this one is gone forever; we probably know as much about it as we're ever going to know." Thus Avi Loeb's recent paper with Shmuel Bialy discussing the object's...

read more

A Super-Earth Orbiting Barnard’s Star

The detection of a planet around Barnard’s Star really hits home for me. No, this isn’t a habitable world, but the whole topic of planets around this star has resonance for those of us who remember the earliest days of exoplanet study, which could be extended back to Peter van de Kamp’s work at Swarthmore’s Sproul Observatory in Pennsylvania. The astronomer thought he had found evidence for a 1.6 Jupiter mass planet in a 4.4 AU orbit there, based on what he interpreted as telltale wobbles in photographic plates of the star taken between 1916 and 1962. This work, ending in the early 1970s, turned out to be the result of errors in the instrument van de Kamp was using, but the buzz about possible planets around Barnard’s Star had been sufficient to create a small crest of enthusiasm for exoplanet studies in general. The British Interplanetary Society saw in Barnard’s Star a target worth investigating, and designed their Daedalus star probe around a mission there. In any case, van de...

read more

Low Metallicity in Compact Multi-Planet Systems

When astronomers talk about metals, they're using the term in a specific sense. A metal in stellar terms is any element heavier than helium. Thus iron, silicon, magnesium and carbon qualify, all elements that are components of small, rocky planets. It was iron that John Michael Brewer (Yale University), Debra Fischer and colleagues singled out as a proxy in their recent work on the metal content of exoplanet systems. The work focuses specifically on compact, multi-planet systems as one of several system architectures found in close orbit of a host star. What's interesting here is that these domains seem mutually exclusive, or almost so. Unlike our Solar System, a system with multiple planets on tight orbits can squeeze its worlds into a region as close as Mercury. Likewise near the host star, we sometimes find massive planets in close orbits, known as 'hot Jupiters.' Few of these have close planetary neighbors, and few compact multi-planet systems have massive planets. And there is...

read more

Lucy in the Sky

Extended operations at multiple targets, as Dawn showed us, are possible with ion propulsion. But we still learn much from flybys, something New Horizons reminded us with its spectacular success at Pluto/Charon, and again reminds us as it closes on MU69. Likewise, a mission called Lucy will visit multiple objects, using traditional chemical propulsion with gravity assist to achieve flybys of seven different targets. The destination: Jupiter's trojan asteroids. With launch scheduled for 2021, Lucy's will study six Jupiter trojans and one asteroid in the Main Belt. Image: Jupiter's extensive trojan asteroids, divided into 'Trojans' and 'Greeks' in a nod to Homer, but all trojans nonetheless. Credit: "InnerSolarSystem-en" by Mdf at English Wikipedia - Transferred from en.wikipedia to Commons. Licensed under Public Domain via Commons. The trojans are interesting bodies orbiting at the L4 and L5 Lagrange points 60° ahead and behind the gas giant. Jupiter's trojans are the best known...

read more

Parker Solar Probe: Already a Record Setter

Over the sound system in the grocery store yesterday, a local radio station was recapping events of the day as I shopped. The newsreader came to an item about the Parker Solar Probe, then misread the text and came out with "The probe skimmed just 15 miles from the Sun's surface." Yipes! I was in the vegetable section but you could hear him all over the store, so I glanced around to see how people had reacted. Nobody as much as raised an eyebrow, which either says people tune out background noise as they shop or they have little knowledge of our star. The correct number is 15 million miles (24,1 million kilometers), and it's still a hugely impressive feat, but I hope the station got the story right later on. I go easy on this kind of thing because it's easy enough to make a mistake when reading radio copy (I've done this myself). Anyway, there is always some listener who calls it in, which I should have but didn't. I was pushed for time that morning, making choices about squash and...

read more

Fine-Tuning Mechanisms for Water Delivery

We’ve long been interested in how the Earth got its oceans, with possible purveyors being comets and asteroids. The idea trades on the numerous impacts that occurred particularly during the Late Heavy Bombardment some 4.1 to 3.8 billion years ago. Tuning up our understanding of water delivery is important not only for our view of our planet’s development but for its implications in exoplanet systems with a variety of different initial conditions. Image: This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. Credit: NASA. But the picture becomes more complex when we compare regular hydrogen atoms (one proton, one electron) with ‘heavy hydrogen,’ or deuterium atoms. The latter have a neutron in addition to a proton in the nucleus. A recent paper in the Journal of Geophysical Research digs into isotope ratios, the ratio of deuterium to ordinary hydrogen atoms,...

read more

On the Earliest Stars

If you’ve given some thought to the Fermi question lately -- and reading Milan ?irkovi?’s The Great Silence, I’ve been thinking about it quite a bit -- then today’s story about an ancient star is of particular note. Fermi, you’ll recall, famously wanted to know why we didn’t see other civilizations, given the apparent potential for our galaxy to produce life elsewhere. Now a paper in The Astrophysical Journal adds punch to the question by making the case that the part of the galaxy in which we reside may be older than we have thought. Finding that our Sun is younger than many nearby stars, an issue that Charles Lineweaver (Australian National University), among others, has examined, would allow even more time for civilizations to have emerged in the galactic neighborhood. But let’s now leave Fermi behind to look at the tiny star that prompts these ruminations (and to be sure, the paper on this star makes no mention of Fermi, but does tell us something quite interesting about the...

read more

SETI in the Infrared

One of the problems with optical SETI is interstellar extinction, the absorption and scattering of electromagnetic radiation. Extinction can play havoc with astronomical observations coping with gas and dust between the stars. The NIROSETI project (Near-Infrared Optical SETI) run by Shelley Wright (UC-San Diego) and team is a way around this problem. The NIROSETI instrument works at near-infrared wavelengths (1000 - 3500 nm), where extinction is far less of a problem. Consider infrared a 'window' through dust that would otherwise obscure the view, an advantage of particular interest for studies in the galactic plane. Would an extraterrestrial civilization hoping to communicate with us choose infrared as the wavelength of choice? We can't know, but considering its advantages, NIROSETI's instrument, mounted on the Nickel 1-m telescope at Lick Observatory, is helping us gain coverage in this otherwise neglected (for SETI purposes) band. I had the chance to talk to Dr. Wright at one of...

read more

Bennu Coming into Focus

Following a week when we learned of the end of both Kepler and Dawn, let's turn to a mission that is just coming into its own. The earliest images of target asteroid 101955 Bennu from OSIRIS-REx have been tightened by computer algorithm to heighten their resolution. The mission plan here is to examine the small object (approximately 500 meters in mean diameter) and return samples to Earth in 2023. More than a few people have reacted to the similarity in shape between this asteroid, a carbonaceous (C-type) Earth-crossing object in the Apollo group of near-Earth asteroids, and 162173 Ryugu, now under active exploration by the Japanese Hayabusa2 mission. Here we're looking at Bennu through the OSIRIS-REx PolyCam, one of three cameras aboard the spacecraft, from a distance of 330 kilometers. The image is a combination of eight images taken by PolyCam that have been combined to cancel out the asteroid's rotation and produce a high-resolution result. Of the comparison to Ryugu, Julia de...

read more

Farewell to Dawn

It seems to be a week for endings. Following the retirement of the wildly successful Kepler spacecraft, we now say goodbye to Dawn following an extraordinary eleven years that took us not only to orbital operations around Vesta but then on to detailed exploration of Ceres. The spacecraft ran out of hydrazine, with the signal being lost by the Deep Space Network during a tracking pass on Wednesday. No hydrazine means no spacecraft pointing, vital in keeping Dawn's antenna properly trained on a distant Earth. I immediately checked to see if mission director and chief engineer Marc Rayman had gotten off a post on his Dawn Journal site, but he really hasn't had time to yet. It will be interesting to see what Dr. Rayman says, and it's appropriate here to thank him for the continuing updates and insights he provided throughout the Dawn mission. Keeping space exploration in front of the public is essential for continuing funding of deep space robotic missions, as both the Dawn and New...

read more

The Stripes of Dione

Usually when we talk about outer planet moons with oceans, we're looking at Jupiter's Europa, and Saturn's Enceladus. But evidence continues to mount for oceans elsewhere. In the Jupiter system alone, Callisto and Ganymede are likewise strong candidates, while Saturn's Titan probably has a layer of liquid water. Pluto's moon Charon may possess an ocean of water and ammonia, to judge from what appears to be cryovolcanic activity there. At Neptune, Triton's high-inclination orbit should produce plenty of tidal heating that may support a subsurface ocean. Let's pause, though, on another of Saturn's moons, Dione. Here we have evidence from Cassini that this world, some 1120 kilometers in diameter and composed largely of water ice, has a dense core with an internal liquid water ocean, joining Enceladus in that interesting system. But what engages us this morning is not liquid water but a set of straight, bright stripes discovered on the surface and discussed in a new paper from Alex...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives