The imagery we're getting of Jupiter's polar regions is extraordinary. Juno's Jovian Infrared Auroral Mapper instrument (JIRAM) works at infrared wavelengths, showing us a vivid picture of a massive central cyclone at the north pole and eight additional cyclones around it. In the image below, we're looking at colors representing radiant heat, with yellow being thinner clouds at about -13 degrees Celsius, and dark red representing the thickest clouds, at about -118 degrees Celsius. JIRAM can probe down to 70 kilometers below the cloud tops. Image: This composite image, derived from data collected by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard NASA's Juno mission to Jupiter, shows the central cyclone at the planet's north pole and the eight cyclones that encircle it. Credit: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM. This is hardly the orange, white and saffron belted world we are familiar with from telescope views of the lower latitudes. The scale of these storms is, as...
Extracting Exoplanet Topography from Transit Data
How do we go from seeing an exoplanet as a dip on a light curve or even a single pixel on an image to a richly textured world, with oceans, continents and, perhaps, life? We've got a long way to go in this effort, but we're already having success at studying exoplanet atmospheres, with the real prospect of delving into planets as small as the Earth around nearby red dwarfs in the near future. Atmospheric detection and analysis can help us in the search for biosignatures. But I was surprised when reading a recent paper to realize just how many proposals are out there to analyze planetary surfaces pending the development of next-generation technologies. Back in 2010, for example, I wrote about Tyler Robinson (University of Washington), who was working on how we might detect the glint of exo-oceans (see Light Off Distant Oceans for more on Robinson's work). And Robinson's ideas are joined by numerous other approaches. I won't go into detail on any of these, but l do want to illustrate...
A New Theory of Lunar Formation
Simon Lock and Sarah Stewart are intent upon revising our views on how the Moon was formed. Lock is a Harvard graduate student who last year, in company with Stewart (UC-Davis) presented interesting work on what the duo are calling a 'synestia,' which is the kind of 'structure' resulting from the collision of huge objects. Current thinking about the Moon is that it formed following the collision of a Mars-sized object with the Earth, two huge objects indeed. What Lock and Stewart asked is whether this formation scenario can produce the result we see today. What it calls for is the ejection of material that forms into a disk and, through processes of accretion, gradually becomes the Moon. The problem with it, says Lock, is that it's a very hard trick to pull off: "Getting enough mass into orbit in the canonical scenario is actually very difficult, and there's a very narrow range of collisions that might be able to do it. There's only a couple-of-degree window of impact angles and a...
Probing a ‘Hot Saturn’
When researchers talk about 'hot Saturns,' it's natural to imagine a ringed planet in a close orbit to its star, rings being Saturn's most prominent feature. But WASP-39b hardly fits this picture. Some 700 light years from Earth in the constellation Virgo, this is a tidally locked world that is 20 times closer to its star than the Earth is to the Sun. WASP-39 itself is a G-class star of about 90 percent of the Sun's mass. We have no evidence of planetary rings here, but we do see a planet whose temperature reaches 776 degrees Celsius, with a nightside not much cooler. What keeps this world from being called a 'hot Jupiter' is its low density coupled with a large radius, some 1.27 times that of Jupiter (its density is about 0.28 times that of Jupiter). 'Puffy' planets like this show density levels far more like Saturn, and they orbit close to their stars, accounting for their extended atmospheres. WASP-39b's atmosphere appears free of high-altitude clouds, allowing detailed study of...
A Plausible Path for Life on Enceladus
Cassini has shown us that the plumes of Enceladus are laden not just with ammonia and carbon dioxide but also traces of methane. Scientists at the University of Vienna (Austria) are not claiming this finding as evidence for life, but they have produced laboratory work showing that at least one kind of microbe could survive in conditions like those within the moon. Couple this with the presence of molecular hydrogen (H2), also found within the plumes, and the existence of microorganisms deep within Enceladus appears at least plausible. Some of the methane found in the Enceladus plumes may turn out to be produced by methanogens. The microorganism in question is Methanothermococcus okinawensis, which can be found around sea vents in the Okinawa Trough off Japan. In conditions like these, methanogenic archaea can sustain themselves by the chemical nutrients found around hydrothermal vents, a scenario that could likewise exist beneath the Enceladus ice. Simon Rittmann, working with...
Voyager at Pluto? Alternative Histories
With New Horizons in hibernation as it pushes on toward MU69, it's worth remembering how recently our knowledge of the Kuiper Belt has developed. Gerard Kuiper did not predict the belt's existence, though he did believe that small planets or comets should have formed in the region beyond the orbit of Neptune (he also thought they would have been cleared by gravitational interactions long ago). And I always like to mention Kenneth Edgeworth's work in a 1943 issue of the Journal of the British Astronomical Association, discussing the likelihood of small objects in the region. We could easily be calling the area the Edgeworth/Kuiper Belt, as I occasionally do in these pages. Which takes me back to the Voyager days. It wasn't until 1992 that astronomers discovered 15760 Albion, the first trans-Neptunian object detected after Pluto and Charon. Back in 1980, when controllers were deciding on adjustments to the trajectory of Voyager 1, Pluto was an option, as New Horizons PI Alan Stern has...
What We Are Trying to Find
What is it we are looking for when we probe nearby planetary systems? Certainly the search for life elsewhere compels us to find planets like our own around stars much like the Sun. But surely our goal isn't restricted to finding duplicate Earths, if indeed they exist. A larger goal would be to find life on planets unlike the Earth -- perhaps around stars much different from the Sun -- which would give us some idea how common living systems are in the galaxy. And beyond that? The ultimate goal is simply to find out what is out there. That takes in outcomes as different as widespread microbial life, perhaps leading to more complex forms, and barren worlds in which life never emerged. A galaxy filled with life vs. a galaxy in which life is rare offers us two striking outcomes. We ignore preconceptions to find out which is true. Flaring Red Stars Let's try to put Proxima Centauri's recent flare, discussed yesterday, in context. Events like this highlight our doubts about the viability...
Proxima Flare May Force Rethinking of Dust Belts
News of a major stellar flare from Proxima Centauri is interesting because flares like these are problematic for habitability. Moreover, this one may tell us something about the nature of the planetary system around this star, making us rethink previous evidence for dust belts there. But back to the habitability question. Can red dwarf stars sustain life in a habitable zone much closer to the primary than in our own Solar System, when they are subject to such violent outbursts? What we learn in a new paper from Meredith MacGregor and Alycia Weinberger (Carnegie Institution for Science) is that the flare at its peak on March 24, 2017 was 10 times brighter than the largest flares our G-class Sun produces at similar wavelengths (1.3 mm). Image: The brightness of Proxima Centauri as observed by ALMA over the two minutes of the event on March 24, 2017. The massive stellar flare is shown in red, with the smaller earlier flare in orange, and the enhanced emission surrounding the flare that...
Detecting Early Life on Exoplanets
At the last Tennessee Valley Interstellar Workshop, I was part of a session on biosignatures in exoplanet atmospheres that highlighted how careful we have to be before declaring we have found life. Given that, as Alex Tolley points out below, our own planet has been in its current state of oxygenation for a scant 12 percent of its existence, shouldn't our methods include life detection in as wide a variety of atmospheres as possible? A Centauri Dreams regular, Alex addresses the question by looking at new work on chemical disequilibrium and its relation to biosignature detection. The author (with Brian McConnell) of A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2016), Alex is a lecturer in biology at the University of California. Just how close are we to an unambiguous biosignature detection, and on what kind of world will we find it? by Alex Tolley Image: Archaean or early Proterozoic Earth showing stromatolites in the foreground. Credit: Peter...
Streamlining Exoplanet Validation
Between Kepler and the ensuing K2 mission, we’ve had quite a haul of exoplanets. Kepler data have been used to confirm 2341 exoplanets, with NASA declaring 30 of these as being less than twice Earth-size and in the habitable zone. K2 has landed 307 confirmed worlds of its own. K2 offers a different viewing strategy than Kepler’s fixed view of over 150,000 stars. While the transit method is still at work, K2 pursues a series of observing campaigns, its fields of view distributed around the ecliptic plane, and with photometric precision approaching the original. Why the relationship with the ecliptic? Remember that what turned Kepler into K2 was the failure of two reaction wheels, the second failing less than a year after the first. Working in the ecliptic plane minimizes the torque produced by solar wind pressure, thus minimizing pointing drift and allowing the spacecraft to be controlled by its thrusters and remaining two reaction wheels. Each K2 campaign is limited to about 80 days...
Computation Between the Stars
Frank Wilczek has used the neologism 'quintelligence' to refer to the kind of sentience that might grow out of artificial intelligence and neural networks using genetic algorithms. I seem to remember running across Wilczek's term in one of Paul Davies books, though I can't remember which. In any case, Davies has speculated himself about what such intelligences might look like, located in interstellar space and exploiting ultracool temperatures. A SETI target? If so, how would we spot such a civilization? Wilczek is someone I listen to carefully. Now at MIT, he's a mathematician and theoretical physicist who was awarded the Nobel Prize in Physics in 2004, along with David Gross and David Politzer, for work on the strong interaction. He's also the author of several books explicating modern physics to lay readers. I've read his The Lightness of Being: Mass, Ether, and the Unification of Forces (Basic Books, 2008) and found it densely packed but rewarding. I haven't yet tackled 2015's A...
Probing Outer Planet Storms
A Hubble project called Outer Planet Atmospheres Legacy (OPAL) has been producing long-term information about the four outer planets at ultraviolet wavelengths, a unique capability that has paid off in deepening our knowledge of Neptune. If you kept pace with Voyager 2 at Neptune, you'll recall that the spacecraft found huge dark storms in the planet's atmosphere. Neptune proved to be more atmospherically active than its distance from the Sun would have suggested, and Hubble found another two storms in the mid-1990's that later vanished. Image: Neptune's Great Dark Spot, a large anticyclonic storm similar to Jupiter's Great Red Spot, observed by NASA's Voyager 2 spacecraft in 1989. The image was shuttered 45 hours before closest approach at a distance of 2.8 million kilometers. The smallest structures that can be seen are of an order of 50 kilometers. The image shows feathery white clouds that overlie the boundary of the dark and light blue regions. Credit: NASA/JPL. Now we have...
Mistakes in the Drake Equation
Juggling all the factors impacting the emergence of extraterrestrial civilizations is no easy task, which is why the Drake equation has become such a handy tool. But are there assumptions locked inside it that need examination? Robert Zubrin thinks so, and in the essay that follows, he explains why, with a particular nod to the possibility that life can move among the stars. Although he is well known for his work at The Mars Society and authorship of The Case for Mars, Zubrin became a factor in my work when I discovered his book Entering Space: Creating a Spacefaring Civilization back in 2000, which led me to his scientific papers, including key work on the Bussard ramjet concept and magsail braking. Today's look at Frank Drake's equation reaches wide-ranging conclusions, particularly when we begin to tweak the parameters affecting both the lifetime of civilizations and the length of time it takes them to emerge and spread into the cosmos. by Robert Zubrin There are 400 billion other...
Galaxies in Motion
"Wherever you go, there you are." So goes an old saw that makes a valid point: You can't escape yourself by changing locations. Translating the great Greek poet C. P. Cavafy, Lawrence Durrell tweaked the language of "The God Abandons Antony" to come up with these closing lines: Ah! don't you see Just as you've ruined your life in this One plot of ground you've ruined its worth Everywhere now — over the whole earth? All this in the service of Durrell's Alexandria Quartet, noting the fact that not even a Roman autocrat could escape his fate. Bear with me -- I think about stuff like this when I'm out walking late at night and the stars are particularly stunning. Before my walk, I had been looking at images of M31, the Andromeda galaxy, and doing my usual "What would it be like to be there" routine. Minus Durrell/Cavafy's dark vision, I might still ask myself what had changed. From a vantage in the Andromeda galaxy, there would be a Milky Way in my sky. And what else? Then David...
‘Oumuamua: New Work on Interstellar Objects
Anomalous objects are a problem -- we need more than one to figure them out. One 'hot Jupiter' could have been an extreme anomaly, but we went on to find enough of them to realize this was a kind of planet that had a place in our catalog. Or think of those two Kuiper Belt objects that New Horizons imaged, as discussed in yesterday's post. Soon we'll have much closer imagery of MU69, but it will take more encounters -- and more spacecraft -- to begin to fathom the full range of objects that make up the Kuiper Belt. Ultimately, we'd like to see enough KBOs up close to start drawing statistically valid conclusions about the entire population. So where does the intriguing 'Oumuamua fit into all this? It was the first interstellar asteroid we've been able to look at, even if the encounter was fleeting. A friend asked me, having learned of the Breakthrough Listen SETI monitoring of the object, whether it wasn't absurd to imagine it could be a craft from another civilization. I could only...
The View from the Kuiper Belt
New Horizons continues to push our limits, revealing new sights as it makes its way through the Kuiper Belt enroute to a January 1, 2019 encounter with the KBO 2014 MU69. No object this far from the Sun has ever been visited by a spacecraft. Adding further interest is the unusual nature of the target, for MU69 is thought to be a contact binary, two independent bodies that have touched (comet Churyumov-Gerasimenko is likely a contact binary as well). The beauty of this kind of exploration, of course, is that we so often get surprised when we reach our destination. Below is an image of NGC 3532, also known as the Wishing Well Cluster, an open cluster in the constellation Carina that has its own place in our observational history, becoming the first target ever observed by the Hubble Space Telescope. That was in May of 1990; this is New Horizons' view in December. The Wishing Well Cluster is a naked eye object for southern hemisphere observers, one of the most spectacular clusters of...
Europa and Enceladus: Hotspots for Life
Icy moons around Jupiter and Saturn offer exciting venues for possible life elsewhere in our Solar System. But how do we penetrate surface ice to reach the oceans below? In today's post, Kostas Konstantinidis surveys the field of in-situ operations on places like Enceladus and Europa. Enceladus will be a tricky place to land thanks to rough topography and polar lighting conditions. Europa poses its own challenges; once we're down, how do we power up the technologies to get below the ice? Kostas developed a mission concept for DLR, the German space agency, to sample subsurface plume sources on Enceladus as part of the Enceladus Explorer (EnEx) project. He is currently working on a PhD thesis at Bundeswehr University (Munich) simulating a safe landing on that world, and tells me he hopes that by the end of his academic career, he will have 'a nice mugshot of an alien microbe swimming around in its natural environment to show for it.' How to get that mugshot is a fascinating issue, as...
Lunar Recession: Implications for the Early Earth
It was in 1775 that Pierre-Simon Laplace developed his theories of tidal dynamics, formulating in the following year a set of equations to explain the phenomenon at a greater level of detail than ever before. Looking at the Moon on a frosty winter night, it's pleasing to realize that there is a mountainous region at the end of Montes Jura in Mare Imbrium that is called Promontorium Laplace. Surely the French astronomer and mathematician would have been pleased. One result of Laplace's calculations was his pointing out that the Moon's equatorial bulge was far too large to be accounted for by its current rate of rotation. Here we're dealing with conditions of formation of an object thought to have been the result of a collision between the Earth and a Mars-sized planet early in our system's evolution. I seldom write about the Moon in these pages, but today's story on its development catches my eye because it relates to the early history of our own world and the Solar System itself. For...
TRAPPIST-1: Planets Likely Rich in Volatiles
Yesterday we saw that, by pushing the Hubble telescope to its limits, we could make a call about three of the TRAPPIST-1 planets -- d, e and f -- and one possibility for their respective atmospheres. The Hubble data rule out puffy atmospheres rich in hydrogen for these three (TRAPPIST-1 g needs more work before a definitive call can be made there). This is a useful finding, for hydrogen is a greenhouse gas that can heat planets close to their star beyond our usual norms for habitability. Set out deeper in a stellar system, we can think of Neptune, a gaseous world far different from the kind of rocky, terrestrial-class planets most likely to produce surface water. So on balance, the Hubble work, while not telling us anything more about potential atmospheres in this system, does rule out the Neptune scenario. That leaves open the question of whether future instruments will find more compact atmospheres. The James Webb Space Telescope should be able to probe these worlds, perhaps...
Falcon Heavy: Extraordinary!
The Tau Zero Foundation and Centauri Dreams congratulates team Space Exploration Technologies, for the successful, historic, pioneering test flight of the Falcon Heavy. Ad Astra Incrementis indeed! From all of us, Jeff Greason Marc Millis Rhonda Stevenson Andrew Aldrin Paul Gilster Bill Tauskey Rod Pyle