A ‘Flyby’ Model for Early Solar System Evolution

How close would a passing star have to come to produce drastic results on the outer Solar System? According to researchers at the Max Planck Institute for Radio Astronomy in Bonn, roughly 3 times Neptune's distance would be disruptive enough to explain what we see beyond that planet's orbit today. Led by Susanne Pfalzner, the scientists have been modeling close stellar flybys of other planetary systems for years, but have only recently turned their attention to the eccentricities of our own system, where conditions beyond Neptune pose questions. Image: Artist's concept of a stellar system in the making with a protoplanetary disk surrounding a young star. Credit: NASA JPL-Caltech. A look at the Solar System's formation highlights the problematic nature of the process. Out to the orbit of Neptune, planets, dwarf planets and asteroids orbit with only small differences in orbital inclination, indicative of the flatness of the original disk from which all these objects drew their birth...

read more

New Insights into Beta Pictoris b

Beta Pictoris b continues to instruct us in the ways of exoplanet finding. Consider: The young world was identified in 2008 through direct imaging via the Very Large Telescope at the European Southern Observatory site at Cerro Paranal (Chile). Actually seeing an exoplanet is no small feat. We are in this case talking about a bright A-class star some 63 light years away in the wash of whose light we can pick out a comparatively small planet. But it was also a young planet, putting out plenty of heat amidst the large debris disk, the first such disk ever imaged. The earliest detections of planets around main sequence stars have involved radial velocity, using Doppler methods that can tell us the rate at which the star moves toward and then away from the Earth as it is affected by the planet orbiting it. But radial velocity is a tough call at Beta Pictoris because these changes are tiny, and we are dealing with a star those fast rotation and stellar pulsations obscure the needed signal....

read more

The Prevalence of ‘Water Worlds’

The first time I ran into the term 'water world,' it had a seductive quality. After all, we think of habitable zones in terms of water on the surface, and a world with an overabundance of water suggested a kind of celestial Polynesia, archipelagos surrounded by a planet-circling, azure sea. But we immediately run into problems when we think about planets with substantially more water than Earth. For one thing, we may have no land at all. Let's leave aside the icy moons of our Solar System that may well contain oceans beneath their surface and concentrate on exoplanets in the interesting size range of two to four times the size of Earth. We have to ask what would happen if a planet were completely covered with water, with no run-off of nutrients from exposed rock. Such an ocean could be starved of key elements like phosphorus. Or how about a planet with a high-pressure zone of ice effectively cutting off the global ocean from the rocky mantle? A world with enough water -- 50 times...

read more

The Breakthrough Starshot Opportunity

When we think about what is usually called 'planetary protection,' we're talking about the probes we send to possibly life-bearing places like Mars or Europa. It would confound our investigations if we couldn't be sure we hadn't contaminated such a place with microorganisms from Earth, unwittingly carried aboard a lander that was not properly stripped of such passengers. Even our Cassini Saturn orbiter was guided into the planet as a way of ensuring that it would not, at some future date, crash into a place as biologically interesting as Enceladus. Yesterday, having looked at an essay by Ethan Siegel, I asked rhetorically whether we should think up some kind of exoplanetary protection policy as well. After all, we're fleshing out an actual mission design through Breakthrough Starshot, aiming to reach nearby stars in coming decades. Siegel (Lewis & Clark College) had expressed his concern that Breakthrough Starshot might inadvertently start an interstellar war. The idea is extreme,...

read more

On the Enigma of Arrival

The death of V.S. Naipaul (1932-2018), that cross-grained and all too combative man who saw so unflinchingly into the post-colonial lands from which he drew his heritage, invariably brings to mind his strangest novel, The Enigma of Arrival (Vintage Books, 1987). Temporarily settled into a cottage in Wiltshire in rural England, the author looks back on his career in search of a renewal as cyclic as the seasons. Landscape inspires creativity in this deeply visualized microcosm, even as Naipaul broods over the painting that gives the book its title. The novel is an odd, self-indulgent work, one I completed more out of a sense of duty (I was reviewing it for a newspaper) than enthusiasm. Yet its introspective imagery keeps resonating. Naipaul was obsessed with the sub-story of the painting, showing the arrival of a visitor at a strange port city and implying a subsequent journey that would in some way parallel his own career. The work of Giorgio de Chirico (1888-1978), ‘The Enigma of...

read more

Omega Centauri: Improbable Venue for Life?

Although it appears in the same constellation as seen from Earth (Centaurus), Omega Centauri has nothing to do with the Alpha Centauri stars that so interest interstellar flight theorists. The brightest globular cluster visible in our skies, Omega Centauri is anything but close (16,000 light years out) and, containing several million stars, is the largest globular cluster in our galaxy. We may in fact be looking at the core of a dwarf galaxy once absorbed by the Milky Way. But although it's quite distant, Omega Centauri may be the source of the relatively nearby Kapteyn's Star, just 13 light years from the Sun. Where this gets intriguing is that Kapteyn's Star, (named after Dutch astronomer Jacobus Kapteyn) is known to have at least two planets, one of them considered the oldest known potentially habitable planet -- let's call it a 'temperate Super-Earth', as Guillem Anglada-Escudé and team have done -- at 11 billion years old. Steven Kane (UC-Riverside), working with graduate...

read more

Probing Ultrahot Jupiters

Speaking of getting really, really close to a star, as we were yesterday in our discussion of the Parker Solar Probe, I couldn’t help but turn to new computer models of the ‘ultrahot Jupiter’ WASP-121b. I still find it delightful that the earliest exoplanet detections involved a category of planet that few scientists had imagined existed. These days we routinely discuss gas giants blisteringly close to their hosts, and even manage to extract information about their atmospheres through transmission spectroscopy, but few people expected such planets when we began to discover them. In fact, Apollo 11’s Buzz Aldrin had a role to play in what may be considered to be the first prediction of the worlds we would start calling ‘hot Jupiters.’ Working with John Barnes on his novel Encounter with Tiber (Grand Central, 1996), Aldrin asked physicist Greg Matloff whether a hydrogen-helium atmosphere as found in a Jupiter-class world could survive in an inner stellar system. Here’s how Matloff...

read more

Musings on the Parker Solar Probe

The first thing I did when I heard about the Parker Solar Probe's successful launch (0731 UTC Sunday) was to double-check the spacecraft's projected velocity when it makes its closest approach to the Sun. I always think in terms of high speed when contemplating operations close to our star, the legacy of the two Helios missions, which at present hold the record as fastest man-made objects. Placed in highly elliptical orbits after their launches in 1974 and 1976, the Helios spacecraft managed a sizzling 70 kilometers per second. The Helios missions were a joint venture between what was then West Germany's space agency and NASA, the craft themselves built by German aerospace firm Messerschmitt-Bölkow-Blohm. Helios 2 flew closer to the Sun by about 3 million kilometers, closing to 0.29 AU (43 million kilometers), which took it inside the orbit of Mercury. The Parker Solar Probe ups the ante considerably, with an eventual closest approach of just 6.1 million kilometers. The spacecraft at...

read more

Detecting Life On Other Worlds

Now that we're getting closer to analyzing the atmospheres of terrestrial-size exoplanets, it's worth remembering how difficult the call on the existence of life is going to be. Long-time Centauri Dreams contributor Alex Tolley takes on the issue in his essay for today, pointing out along the way just how easy it is to see what we want to see in our data. While we can learn much from terrestrial biology, new approaches looking at 'pathway complexity' may offer useful indications of biology and a set of markers not constrained by our own unique sample of life on Earth. A lecturer in biology at the University of California, Alex brings us up to speed with extending our methods of life detection in ways that are 'biology agnostic.' Expect controversy ahead -- will we know life when we see it, and how can we be sure? by Alex Tolley Manuel Werner, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=633977 Life: [noun]? The condition that distinguishes animals and plants from...

read more

A ‘Rogue’ Object’s Strong Magnetic Field

Given the spectacular interactions between Io and Jupiter -- the moon plays a major role in shaping the planet’s magnetic field and contributes a cloud of particles originally produced by its volcanic activity -- it’s all but inevitable that a recently discovered ‘rogue’ object would be compared to the duo. The rogue in question is SIMP J01365663+0933473, a planetary mass object of perhaps 12 Jupiter masses that is at the boundary between brown dwarf and planet. Between 12 and 13 Jupiter masses is considered to be the deuterium burning limit; i.e., above this, we would expect a gaseous object to be a deuterium-burning brown dwarf. What an intriguing situation we find here. Originally found in data collected by the Very Large Array, SIMP J01365663+0933473 (which I’ll now mercifully shorten, as per the paper, to SIMP0136) has a magnetic field some 200 times stronger than Jupiter’s. The discovery marked the first radio detection of a possibly planetary mass object beyond our Solar...

read more

Plate Tectonics: Necessary for Habitability?

Just how important is plate tectonics for the development of complex life? We’ve learned that its continual churn, with material pushing up from ocean rifts and being subducted as it meets continental shelves, can moderate the Earth’s climate. Increasing temperatures are tamped down through the capture of excess carbon dioxide in rocks, which reduces potential greenhouse conditions. Lowering temperatures will produce the reverse effect. The result is a mechanism for maintaining stable temperatures that some have seen as necessary for life. "Volcanism releases gases into the atmosphere, and then through weathering, carbon dioxide is pulled from the atmosphere and sequestered into surface rocks and sediment," said Bradford Foley, assistant professor of geosciences at Penn State University. "Balancing those two processes keeps carbon dioxide at a certain level in the atmosphere, which is really important for whether the climate stays temperate and suitable for life." And indeed, most of...

read more

Toward An Archaeology of Exo-Civilizations

Light of the Stars: Alien Worlds and the Fate of the Earth, by Adam Frank. W.W. Norton & Co. (2018), 272 pp. Although he has published several previous books and is well represented in the technical literature, Adam Frank (University of Rochester) found himself suddenly thrust onto the public stage with an op-ed he wrote in the New York Times in 2016. Chosen by the paper's editors, the title "Yes, There Have Been Aliens" injected a certainty Frank didn't intend, but it brought up an intriguing point: We may not know whether other technological civilizations exist now, but the odds are exceedingly good that at some point, somewhere, they once did. Frank and colleague Woody Sullivan had written the original idea up for Astrobiology, the result of their pondering how exoplanet data now streaming in could be used to refine the original Drake equation, which sets up the factors thought to determine the prevalence of technological societies in the universe. In his new book Light of the...

read more

On to Ultima Thule

I am now back on the job, and somewhere beyond Pluto seems a good place to go. Somehow it seems safer out there. While vacationing here on Earth, I was bitten by a brown recluse spider, spent two weeks with a swollen and painful foot, and came down with the most intense flu-like symptoms I've ever experienced. The final indignity: I received my monthly report on Centauri Dreams reader statistics. Since I had done no posting for a large portion of this report, I was curious to find out how much traffic had slowed in my absence. It turned out that traffic increased right after I stopped posting and stayed robust the entire time. I am trying to figure out what this means... But back to New Horizons, putting my tumultuous vacation experience behind me. Anyone who remembers how hard it was to find a suitable Kuiper Belt Object to serve as New Horizons' next target will understand how challenging it would be to observe MU69 from the ground. The distant object, perhaps a binary, must be...

read more

Revising the Classical ‘Habitable Zone’

With my time-out period over (more about this next week), I want to get back into gear with the help of Ramses Ramirez, a specialist on planetary habitability whose work has now taken him to Japan. Born and raised in New York City, Ramses tells me he is much at home in his new position as a research scientist at the Earth-Life Science Institute (ELSI) in Tokyo, where opportunities for scientific collaboration abound and the chance to learn a new language beckons. We've looked at Ramses' papers a number of times in these pages, and I was delighted when he offered this description of his work to our readership. A student of James Kasting, he received his Ph.D. from Penn State in 2014 and went on to postdoc work with Lisa Kaltenegger at Cornell's Carl Sagan Institute. A fascination with astrobiology and the issues involved in defining habitable zones continues to be a primary focus. Ramses' new paper ponders whether we are best served by looking for life similar to Earth's because this...

read more

Time Out

Dave Brubeck's Time Out album was the first jazz LP I ever bought, just after it came out in 1959, the same year that Miles Davis released Kind of Blue. Watershed moments both. Paul Desmond once said of his alto sax work that he was trying to create the sound of a dry martini, a description I certainly can't top. Last night, while listening to Desmond and Brubeck, I realized that the Time Out album would be emblematic for today's post. For it's that time of year, and I am indeed taking time out for a much needed break. Centauri Dreams will be back in the first week of August, but until then, my break will include a good bit of jazz, much catch-up reading, a lot of long walks and, perhaps, a few of those martinis Desmond talks about. I'll keep an eye on the site to handle comment moderation as well. Meanwhile, I hope all of you are having a splendid summer.

read more

Unusual Companion for a Brown Dwarf Binary

A cluster of stars sharing a common origin, now gravitationally unbound, is referred to as a stellar association. I’ve written before about how useful some of these groupings can be. In the form of so-called moving groups -- a stellar association that is still somewhat coherent -- they help us identify stars of similar age, an aid as we discover new objects. Now we have word of an object called 2MASS 0249 c, found in the Beta Pictoris moving group, that has striking similarities to the most famous member of that group, Beta Pictoris b. 2MASS 0249 c, like Beta Pictoris b, was found by direct imaging, meaning we’re actually looking at the object under discussion in the image below. The two objects are all but identical in mass, brightness and spectrum. Images from the Canada-France-Hawaii Telescope (CFHT) showed an object moving at a large distance from its host, which turned out to be a pair of closely spaced brown dwarfs. Follow-up observations with the Keck instrument allowed that...

read more

An Unusually Interesting Asteroid

We learned late last week that the near-Earth asteroid 2017 YE5, discovered just last December, is what is described as an 'equal mass' binary. This would make it the fourth near-Earth asteroid binary ever detected in which the two objects are nearly identical in size, both about 900 meters. The binary's closest approach to Earth was on June 21, 2017, when it came to within 6 million kilometers, some 16 times the distance between the Earth and the Moon. It won't be that close again for at least another 170 years. Image: Artist's concept of what binary asteroid 2017 YE5 might look like. The two objects show striking differences in radar reflectivity, which could indicate that they have different surface properties. Credit: NASA/JPL-Caltech. What you have above is an artist's impression of how 2017 YE5 appears, but have a look at the radar imagery below. This comes from NASA's Goldstone Solar System Radar (GSSR, observations conducted on June 23, 2018), and shows the presence of two...

read more

Ross 128b: Analyzing a Planet by the Light of its Star

Red dwarfs have a lot of things going for them when it comes to finding possibly habitable planets. A planet of Earth size in the HZ will produce a substantial transit signal because of the small size of the star (‘transit depth' refers to the amount of the star's light that is blocked by the planet), and the tight orbit the planet must follow increases the geometric probability of observing a transit. But planets that do not transit are also more readily detected because of the large size of the planet compared to the star, gravitational interactions producing a strong radial velocity signature, which is what we have in the case of Ross 128b. About 11 light years from Earth, the planet was culled out of more than a decade of radial velocity data in 2017 using the European Southern Observatory's HARPS spectrograph (High Accuracy Radial velocity Planet Searcher) at the La Silla Observatory in Chile. The location of the planet near the inner edge of its star’s habitable zone excited...

read more

Pluto Maps Inspire Thoughts of Bradbury

Something happens when we start making maps of hitherto unknown terrain. A sense of familiarity begins to settle in, a pre- and post-visit linearity, even when the landscape is billions of miles away. To put a name on a place and put that name on a map is a focusing that turns a bleary imagined place into a surface of mountains and valleys, a place that from now on will carry a human perspective. It can't be undone; a kind of wave function has already collapsed. And what place more remote than Pluto? At the dwarf planet's Tenzing Montes, we find striking peaks, some of them running up to 6 kilometers in height, and all this on a world that, until 2015, we weren't sure even had mountains. Certainly we weren't expecting mountains this tall, or a terrain this rugged. Given how many years may pass before we have another chance to visit Pluto/Charon, these first official validated topographic maps of the dwarf planet and its moon, just released, will carry our science -- and our...

read more

TVIW Symposium on The Power of Synergy

Ever since I started Centauri Dreams in 2004, I've been talking about the question of infrastructure within the Solar System. My thinking has always been that while we will doubtless get off interstellar missions beginning with robotics on an ad hoc basis during this century, the prospect of a sustained effort will require a built-out infrastructure that will help us create and test out deep space systems of many kinds, from new propulsion technologies to closed loop life support experiments. One step at a time, but do this right and we may push deep into the Kuiper Belt, then the Oort Cloud and, we can hope, beyond. That's a long-term vision and it clashes with what we've seen since Apollo, a retreat from lunar exploration by humans that may eventually be reversed as we think about partnerships between commercial aerospace and government space programs. To explore these concepts, an upcoming meeting called the TVIW Symposium on The Power of Synergy is to be held in Oak Ridge, TN...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives