Laser Beaming and Infrastructure

Looking at John Brophy's Phase II NIAC award reminds us how useful the two-step process can be at clarifying and re-configuring deep space concepts. Brophy (Jet Propulsion Laboratory) had gone to work in Phase I with a study called "A Breakthrough Propulsion Architecture for Interstellar Precursor Missions." The work studied a lithium-fueled ion thruster with a specific impulse of 58,000 seconds. If that didn't get your attention, consider that the Dawn spacecraft's ISP is 3,000 seconds, and think about what we might be able to do with that higher figure. I think about ideas like this in terms of infrastructure. The relation to interstellar flight is this: While we may well get robotic nano-probes off on interstellar missions (think Breakthrough Starshot) some time this century, the idea of human expansion into the cosmos awaits the growth of our civilization into the rest of the Solar System. Along the way, we will learn the huge lessons of closed-loop life support, means of...

read more

Tightening the Beam: Correspondence on PROCSIMA

Yesterday's post on PROCSIMA (Photon-paRticle Optically Coupled Soliton Interstellar Mission Accelerator) has been drawing a good deal of comment, and I wanted to dig deeper into the concept this morning by presenting some correspondence between plasma physicist Jim Benford, a familiar face on Centauri Dreams, and PROCSIMA's creator, Chris Limbach (Texas A&M Engineering Experiment Station). As we saw yesterday, PROCSIMA goes to work on the problem of beam spread in both laser and particle beam propulsion concepts. In my own email exchange with Dr. Limbach, he took note of the comments to yesterday's Centauri Dreams article, with a useful nod to a concept called 'optical tweezers' that may be helpful. So let me start with his message of April 4, excerpting directly from the text: I took a quick glance at the comments, and I see that the laser guiding (i.e. waveguide) effect is fairly well understood, but the guiding of the particles is less clear. I admit this is the less intuitive...

read more

PROCSIMA: Wedding Two Beam Concepts

The name Proxima will always have resonance with interstellar theorists given that our nearest target -- and one with a potentially life-bearing planet at that -- is Proxima Centauri. Thus an acronym with the same pronunciation is bound to catch the attention. PROCSIMA stands for Photon-paRticle Optically Coupled Soliton Interstellar Mission Accelerator, one of 25 early-stage technology proposals selected for Phase I funding by the NASA Innovative Advanced Concepts (NIAC) office. A number of Phase II proposals selected for funding was also announced. These awards are always fascinating to watch because they're chosen from a host of bleeding edge ideas, helping us keep a finger on the pulse of deep space thinking even if many of them end with their Phase I funding, $125,000 over nine months to produce an initial definition and analysis. Should the results be encouraging, Phase II funding becomes a possibility, ramping the money up to $500,000 over two years to encourage further...

read more

2001: A Space Odyssey – 50 Years Later

Fifty years ago today, 2001: A Space Odyssey was all the buzz, and I was preparing to see it within days on a spectacular screen at the Loew's State Theater in St. Louis. The memory of that first viewing will always be bright, but now we have seasoned perspective from Centauri Dreams regular Al Jackson, working with Bob Mahoney and Jon Rogers, to put the film in perspective. The author of numerous scientific papers, Al's service to the space program included his time on the Lunar Module Simulator for Apollo, described below, and his many years at Johnson Space Center, mostly for Lockheed working the Shuttle and ISS programs. But let me get to Al's foreword -- I'll introduce Bob Mahoney and Jon Rogers within the text in the caption to their photos. Interest in 2001 is as robust as ever -- be aware that a new 513-page book about the film is about to be published. It's Michael Benson's Space Odyssey: Stanley Kubrick, Arthur C. Clarke, and the Making of a Masterpiece. Let's now return to...

read more

Imaging a Centauri Planet

Last December I mentioned the ongoing work at the European Southern Observatory's Very Large Telescope to modify an instrument called VISIR (VLT Imager and Spectrometer for the InfraRed). Breakthrough Initiatives, through its Breakthrough Watch program, is working with the ESO's NEAR program (New Earths in the Alpha cen Region) to improve the instrument's contrast and sensitivity, the goal being the detection of a habitable zone planet at Alpha Centauri. Exciting stuff indeed, especially given the magnitude of the challenge. After all, we are dealing with a tight binary, with the two stars closing to within 11 AU in their 79.9 year orbit about a common center (think of a K-class star at about Saturn's distance). The binary's orbital eccentricity can separate the stars by about 35 AU at their most distant. The latest figure I've seen for the distance between Centauri A/B and Proxima Centauri is about 13,000 AU. In an ESO blog post that Centauri Dreams reader Harry Ray passed along,...

read more

ARIEL: Focus on Exoplanet Atmospheres

Given Centauri Dreams's interest in exoplanet studies, it's no surprise that when I write about the James Webb Space Telescope, it's usually to fit the observatory into the overall study of other stellar systems. But of course JWST has been conceived to study everything from the earliest stars and galaxies to the ongoing birth of stars out of massive clouds of dust, not to mention objects within our own Solar System. JWST also offers us a real chance to probe exoplanet atmospheres around nearby M-dwarfs, but it is certainly not a dedicated exoplanet mission. So while we hope for a successful launch in 2020, according to the evolving schedule, and look forward to finding plenty of JWST targets with the upcoming Transiting Exoplanet Survey Satellite (TESS), let's have a look at a new mission from the European Space Agency with a tight exoplanet focus. The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) has just been selected as an ESA science mission scheduled for...

read more

Getting JWST Aloft

No one said this was going to be easy. Delays involving the James Webb Space Telescope are frustrating, with NASA now talking about a launch in mid-2020 instead of next year, and the uncertain prospect of a great deal of further testing and new expenditures that could run the project over budget, necessitating further congressional approval. It's hard to look back at the original Webb projections without wincing. When first proposed, estimates on the space observatory ran up to $3.5 billion, a hefty price tag indeed, though the science payoff looked to be immense. It was in 2011 that a figure of $8 billion emerged; the project now has a Congressionally-mandated cost cap of $8.8 billion. And now, looking forward, we have Thomas Zurbuchen, speaking for NASA's Science Mission Directorate, explicitly saying "We don't really fully know what the exact cost will be…" Image: Illustration of NASA's James Webb Space Telescope. Credit: NASA. Projects this big invariably take us into the...

read more

TRAPPIST-1: An Abundance of Water?

Too much water helps planetary habitability not one bit. And while we find the availability of surface water a useful way of describing a potentially habitable world, we're learning that some planets may have water in such abundance that life may never have the chance to emerge. It would be a shame if the numerous worlds orbiting TRAPPIST-1 fell into this scenario, but a multidisciplinary team from Arizona State University is making a strong case for the prospect. What's wrong with water? Let Natalie Hinkel (Vanderbilt University) explain. Hinkel worked with ASU's Cayman Unterborn, Steven Desch and Alejandro Lorenzo on the question of water composition in these worlds. Coleridge's "Rime of the Ancient Mariner" comes to mind -- "Water, water, every where / Nor any drop to drink." But in this case, there is plenty to drink, which is precisely the problem. Says Hinkel: "We typically think having liquid water on a planet as a way to start life, since life, as we know it on Earth, is...

read more

Interplanetary Exploration: Application of the Solar Sail and Falcon Heavy

Gregory Matloff’s contributions to interstellar studies need scant introduction, given their significance to solar-and beamed sail development for decades, and their visibility through books like The Starflight Handbook (1989) and Deep Space Probes (2005). A quick check of the bibliography online will demonstrate just how active Greg continues to be in analyzing the human future in space, as well as his newfound interest in the nature of consciousness (Star Light, Star Bright, 2016). The paper that follows grows out of Greg’s presentation at the 2016 iteration of the Tennessee Valley Interstellar Workshop, where he discussed ways to advance deep space exploration using near term technologies like Falcon Heavy, in conjunction with the solar sail capabilities he has so long championed. Read on for an examination of human factors beyond lunar orbit and a description of a useful near-term mission that could reach an object much closer than Mars relying on both chemical and sail...

read more

A Prehistoric Close Pass

Given the vast distances of interstellar space, you wouldn’t think there would be much chance of stars colliding. But it’s conceivable that so-called ‘blue straggler’ stars are the remnants of just such an event. A large blue straggler contains far more hydrogen than smaller stars around it, and burns at higher temperatures, with a correspondingly shorter life. When you find a blue straggler inside an ancient globular cluster, it’s natural to ask: How did this star emerge? Packing stars as tightly as globular clusters must produce the occasional collision, and in fact astrophysicist Michael Shara (then at the American Museum of Natural History) has estimated there may be as many as several hundred collisions per hour somewhere in the universe. We would never be aware of most of these, but we could expect a collision every 10,000 years or so within one of the Milky Way’s globular clusters. In fact, the globular cluster NGC 6397 shows evidence for what may have been a three-star...

read more

Mission to an Interstellar Asteroid

On the matter of interstellar visitors, bear in mind that our friend ‘Oumuamua, the subject of yesterday’s post, was discovered at the University of Hawaii’s Institute for Astronomy, using the Pan-STARRS telescope. The Panoramic Survey Telescope and Rapid Response System is located at Haleakala Observatory on Maui, where it has proven adept at finding new asteroids, comets and variable stars. Consider ‘Oumuamua a bonus, and according to a new paper from Greg Laughlin and Darryl Seligman (Yale University), a type of object we’ll be seeing again. Pan-STARRS may find objects like this every few years, but we’ll get a bigger payoff in terms of interstellar wanderers with the Large Synoptic Survey Telescope (LSST), now under construction at Cerro Pachón (Chile). Laughlin and Seligman think that this instrument will up the discovery rate as high as several per year, allowing us to see ‘Oumuamua in context, and also, perhaps, setting up the possibility of an intercept mission with a kinetic...

read more

A Binary Origin for ‘Oumuamua?

The fleeting interstellar visitor we call 'Oumuamua is back in the news, an object whose fascination burns bright given its status as a visitor from another star system. Just what kind of system is the subject of a new letter just published in Monthly Notices of the Royal Astronomical Society, in which Alan Jackson and colleagues argue that the star-crossed wanderer is most likely the offspring of a binary stellar system, these being far more likely to eject rocky objects. Our first confirmed interstellar asteroid just grows in interest. Jackson (University of Toronto - Scarborough) is quoted in this news release from the Royal Astronomical Society as saying that the odds didn’t favor the first interstellar object detected in our system being an asteroid. Comets are more likely to be spotted, and our system is more efficient at ejecting comets than asteroids. But 'Oumuamua is what we got, and its eccentricity of 1.2 and 30 km/sec speed pegged its orbit as hyperbolic, clearly not...

read more

A Changing Landscape at Ceres

Ceres turns out to be a livelier place than we might have imagined. Continuing analysis of data from the Dawn spacecraft is showing us an object where surface changes evidently caused by temperature variations induced by the dwarf planet's orbit are readily visible even in short time frames. Two new papers on the Dawn data are now out in Science Advances, suggesting variations in the amount of surface ice as well as newly exposed crustal material. Andrea Raponi (Institute of Astrophysics and Planetary Science, Rome) led a team that discovered changes at Juling Crater, demonstrating an increase in ice on the northern wall of the 20-kilometer wide crater between April and October of 2016. Calling this 'the first detection of change on the surface of Ceres,' Raponi went on to say: "The combination of Ceres moving closer to the sun in its orbit, along with seasonal change, triggers the release of water vapor from the subsurface, which then condenses on the cold crater wall. This causes...

read more

Red Dwarfs: Their Impact on Biosignatures

We’re in the midst of a significant period defining the biosignatures life can produce and determining how we might identify them. Centauri Dreams regular Alex Tolley today looks at a paper offering a unique contribution to this effort. The work of Sarah Rugheimer and Lisa Kaltenegger, the paper looks at how exoplanet spectra change for different types of host star and different epochs of planetary evolution. As Alex points out, the effects are profound, especially given the fact that red dwarfs will be our testbed for biosignature detection as we probe planetary atmospheres during transits around nearby stars. How stellar class affects our analysis will affect our strategies especially as we probe early Earth atmosphere equivalents. What will we find, for example, at TRAPPIST-1? By Alex Tolley As the search for life on exoplanets ramps up, the question arises as to which types of stars represent the best targets. Based on distribution, M-Dwarfs are very attractive as they represent...

read more

Maxing Out Kepler

What happens to a spacecraft at the end of its mission depends on where it's located. We sent Galileo into Jupiter on September 21, 2003 not so much to gather data but because the spacecraft had not been sterilized before launch. A crash into one of the Galilean moons could potentially have compromised our future searches for life there, but a plunge into Jupiter's atmosphere eliminated the problem. Cassini met a similar fate at Saturn, and in both cases, the need to keep a fuel reserve available for that final maneuver was paramount. Now we face a different kind of problem with Kepler, a doughty spacecraft that has more than lived up to its promise despite numerous setbacks, but one that is getting perilously low on fuel. With no nearby world to compromise, Kepler's challenge is to keep enough fuel in reserve to maximize its scientific potential before its thrusters fail, thus making it impossible for the spacecraft to be aimed at Earth for data transfer. In an Earth-trailing orbit...

read more

Antimatter: The Heat Problem

My family has had a closer call with ALS than I would ever have wished for, so the news of Stephen Hawking's death stays with me as I write this morning. I want to finish up my thoughts on antimatter from the last few days, but I have to preface that by noting how stunning Hawking's non-scientific accomplishment was. In my family's case, the ALS diagnosis turned out to be mistaken, but there was no doubt about Hawking's affliction. How on Earth did he live so long with an illness that should have taken him mere years after it was identified? Hawking's name will, of course, continue to resonate in these pages -- he was simply too major a figure not to be a continuing part of our discussions. With that in mind, and in a ruminative mood anyway, let me turn back to the 1950s, as I did yesterday in our look at Eugen Sänger's attempt to create the design for an antimatter rocket. Because even as Sänger labored over the idea, one he had been pursuing since the 1930s, Les Shepherd was...

read more

Stephen Hawking (1942-2018)

The Tau Zero Foundation expresses it deepest sympathies to the family, friends and colleagues of Stephen Hawking. His death is a loss to the the world, to our scientific communities, and to all who value courage in the face of extreme odds.

read more

Harnessing Antimatter for Propulsion

Antimatter's staggering energy potential always catches the eye, as I mentioned in yesterday's post. The problem is how to harness it. Eugen Sänger's 'photon rocket' was an attempt to do just that, but the concept was flawed because when he was developing it early in the 1950s, the only form of antimatter known was the positron, the antimatter equivalent of the electron. The antiproton would not be confirmed until 1955. A Sänger photon rocket would rely on the annihilation of positrons and electrons, and therein lies a problem. Sänger wanted to jack up his rocket's exhaust velocity to the speed of light, creating a specific impulse of a mind-boggling 3 X 107 seconds. Specific impulse is a broad measure of engine efficiency, so that the higher the specific impulse, the more thrust for a given amount of propellant. Antimatter annihilation could create the exhaust velocity he needed by producing gamma rays, but positron/electron annihilation was essentially a gamma ray bomb, pumping out...

read more

Antimatter in Motion

Antimatter will never lose its allure when we're talking about interstellar propulsion, even if the breakthroughs needed to harness it are legion. After all, a kilogram of antimatter, annihilating itself in contact with normal matter, yields roughly ten billion times the amount of energy released when a kilogram of TNT explodes. Per kilogram of fuel, we're talking about 1,000 times more energy than nuclear fission, and 100 times the energy available through nuclear fusion. Or we could put this into terms more suited for space. A single gram of antimatter, according to Frank Close's book Antimatter (Oxford, 2010), could through its annihilation produce as much energy as the fuel from the tanks of two dozen Space Shuttles. The catalog of energy comparisons could go on, each as marvelous as the last, but the reality is that antimatter is not only extremely difficult to produce in any quantity but even more challenging to store. Cram enough positrons or antiprotons into a magnetic bottle...

read more

Lab Work on ‘Super-Earth’ Atmospheres

How we do laboratory work on exoplanet atmospheres is an interesting challenge. We’ve worked up models of the early Earth’s atmosphere and conducted well-known experiments on them. Still within our own system, we’ve looked at worlds like Mars and Titan and, with a good read on their atmospheric chemistry, can reproduce an atmosphere within the laboratory with a fair degree of accuracy. In the realm of exoplanets, we’re in the early stages of atmosphere characterization. We’re getting good results from transmission spectroscopy, which analyzes the light from a star as it filters through a planetary atmosphere during a transit. But thus far, the method has mostly been applied to gas giants. Getting down to the realm of rocky worlds is the next step, one that will be aided by space-based assets like the James Webb Space Telescope. Can lab work also help? Probing the Atmosphere of a ‘Super-Earth’ Worlds smaller than gas giants are plentiful. Indeed, ‘super-Earths’ are the most common...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives