We've looked at a number of concepts for exploring Titan over the years, from aircraft capable of staying aloft for a year or more to balloons and boats that would float on the moon's seas. Dragonfly, the work of a team based at Johns Hopkins University's Applied Physics Laboratory in Laurel, MD, is a rotorcraft with the capability of exploiting Titan's thick atmosphere to stop, sample, and move on, shaping its investigations along the way as it explores an environment rich in targets. These are the advantages of a rover, though here we're in a landscape so exotic that it enables different tools than the ones we use on Mars. And with the success of the Martian rovers in mind, what good news that NASA has chosen Dragonfly as the next mission in its New Frontiers program. We can anticipate launch in 2026 and arrival at Titan in 2034, with a craft that will sample surface organics and examine prebiotic chemistry and potential habitability. Image: This illustration shows NASA's Dragonfly...
Progress on Asteroid Discovery, Impact Mitigation
We have two stories with good news on the asteroid impact front this morning. The first, out of the University of Hawaii’s Institute for Astronomy, is the announcement of the detection of a small asteroid prior to its entering the Earth’s atmosphere. That many not sound unusual, but this is the first time an object could be detected in time to move people away from a impact site, even though asteroid 2019 MO was only about 4 meters across and burned up in the atmosphere. The key is warning time, and here that time would have been half a day. An impactor like the 20-meter object that exploded over Chelyabinsk, Russia in 2013 could, with these same methods, be detected by the ATLAS facility at Maunaloa (Hawaii) several days before impact. ATLAS is made up of two telescopes, one on Hawai?i Island, the other 160 kilometers away at Haleakal?, Maui, providing whole-sky scans every two nights. About 100 asteroids larger than 30 meters in diameter are discovered by the facility every year....
Inside ESA’s Advanced Concept Team Interstellar Workshop
It's always good to have eyes and ears on the ground at events I can't get to, so I was pleased when Aleksandar Shulevski contacted me with the offer to send back notes from the European Space Agency's Advanced Concepts Team Interstellar Workshop in Noordwijk in the Netherlands. Born and raised in Bitola, Republic of Macedonia, Aleksandar is a science fiction reader and amateur astronomer who followed up electrical engineering studies in Skopje with an MSc in astronomy at Leiden University (Netherlands), dealing with calibration issues on the LOFAR radio telescope. He received a PhD from the University of Groningen, doing research on active galactic nuclei radio remnants observed with LOFAR. After working at the Netherlands Institute for Radio Astronomy (ASTRON) as junior telescope scientist, he is now a research scientist at the Anton Pannekoek Institute for Astronomy at the University of Amsterdam, specializing in low-frequency radio transients and pursuing his interest in SETI....
Titan and Astrobiology
Night launches are spectacular, that's for sure, especially with a rocket as muscular as the SpaceX Falcon Heavy. Less spectacular, at least at this point in my life, is staying up until 0230, but delays are part of the rocket business, and what counts is a launch successful in everything but the return of the center booster (both side boosters landed upright at Cape Canaveral). Prox-1, the carrier vehicle for The Planetary Society's LightSail 2, was released at 720 kilometers, with deployment of the sail itself scheduled for July 2. While we wait for LightSail developments and also follow the fortunes of NASA's Deep Space Atomic Clock, launched as one of 24 satellites deployed by this bird, the 2019 Astrobiology Science Conference in Seattle draws attention this morning with new information about Saturn's tantalizing moon Titan. I'm still having to adapt to not having Cassini in Saturn space, but without its presence scientists are proceeding with laboratory studies that re-create...
Into the Uranian Rings
Both DSAC (the Deep Space Atomic Clock) and LightSail 2 are on the line when a SpaceX Falcon Heavy launches on Monday evening. Both missions portend interesting developments in our push to deep space, with DSAC testing our ability to extend navigational autonomy, and LightSail 2 a solar sail that will use the power of solar photons to raise its orbit. You can follow the launch (now scheduled for 2330 Eastern (0330 UTC) on NASA Live. Also lifting off with the Falcon Heavy from the Kennedy Space Center will be almost two dozen other satellites, a nod both to the Falcon Heavy's capabilities but also to increasing spacecraft miniaturization. And speaking of interesting missions, here's something good about one whose anniversary we're about to celebrate. My friend Al Jackson, who served as astronaut trainer on the Lunar Module Simulator in the Apollo days, passed along a link to the Air-to-Ground Loop and the Flight Director's Loop from Apollo 11. Give yourself 20 minutes or so and don't...
Ring Imagery from Cassini’s Deep Dive
Cassini's productivity at Saturn continues to provide fodder for scientific papers and encouragement for the builders of complex missions, who have seen enough data gathered by this one to guarantee continuing insights into the ringed planet for years to come. The June 14 issue of Science offers up four papers (citations below) that show results from four of the spacecraft's instruments, including startling views of the main rings. The data examined in the Science papers were gathered during Cassini's ring-grazing orbits from December, 2016 to April of 2017 as well as during the 'Grand Finale' between April and September of 2017, when Cassini flew closer than ever before to the giant planet's cloud tops. Consider the image below, showing an infrared view as captured by the spacecraft's Visible and Infrared Mapping Spectrometer (VIMS), with (at the left) the natural color view taken as a composite by Cassini's Imaging Science Subsystem. Imaging the rings in visible and near-infrared...
Can We Catch the Next ‘Oumuamua?
Ever since the passage of interstellar interloper 'Oumuamua, we've become aware of the opportunities presented by objects entering our system from interstellar space, at the same time wishing we had the resources at hand to investigate them close-up. Andreas Hein and colleagues at the Initiative for Interstellar Studies have examined the possibilities for reaching 'Oumuamua through Project Lyra (see Project Lyra: Sending a Spacecraft to 1I/'Oumuamua), a study that also takes in the kind of future infrastructure that could allow us to react to the next such object. Now comes the interesting news that the European Space Agency is developing a mission called Comet Interceptor, one capable of visiting a long-period comet coming into the inner system from the Oort Cloud, but just as capable of reaching an interstellar visitor. The idea revolves around not a single spacecraft, but a combination of three. The composite vehicle would be capable of orbiting the L2 Lagrange point 1.5 million...
Breakthrough Listen: SETI Data Release
On Monday I was talking about the rise of open access scientific journals, using the European Space Agency's Acta Futura as just one example. The phenomenal arXiv service, not itself a journal but a repository for preprints of upcoming papers, is already well known in these pages. Now we have the largest public release of SETI data in the history of the field, a heartening follow-through on a trend that broadens the audience for scientific research. Breakthrough Listen is presenting two publications in the scientific literature (available as full text, citation below) describing the results of three years of radio and optical observations, along with the availability of a petabyte of data from its work at the Green Bank instrument in West Virginia and the Parkes Radio Telescope in Australia. This covers a sample of 1327 nearby stars (within 160 light years from Earth) and builds on the team's results on 692 stars as presented in 2017. No signs of extraterrestrial civilizations turn...
CARMENES: Two Habitable Zone Planets around a Nearby Red Dwarf
We rarely talk about Teegarden's Star when mentioning interesting objects near the Solar System, probably because the star was only discovered in 2003 and until now had not been known to host planets. Today we learn, however, that an international team led by the University of Göttingen has found two planets close to Earth mass in what it considers to be the habitable zone around the tiny star. Interestingly, from where the system is located, any local astronomers would be able to see the planets of our Solar System in transit across the face of the Sun, about which more in a moment. One of the reasons that this comparatively nearby star has been so late to be discovered is its size. We are dealing with an M-class red dwarf, this one in the constellation Aries, and no more than 12.5 light years from us. It took three years of patient radial velocity monitoring to track down planets around a star that is only about 2700 degrees Celsius in temperature, and fully 10 times lighter than...
ESA Advanced Concepts Team Interstellar Workshop
Given the difficulties that persist in retrieving many good papers from behind publisher firewalls, I'm always glad to see open access journals plying their trade. Let me call your attention in particular to Acta Futura, which comes out of the scientists working with the European Space Agency's Advanced Concepts Team. Acta Future defines itself as multidisciplinary in scope with a focus on the long-term development of space science. Hence the list of topics is wide, as the website notes, "...ranging from fundamental physics to biomimetics, mission analysis, computational intelligence, neuroscience, as well as artificial intelligence or energy systems," and this does not exhaust the range of possibilities. If you're interested in browsing through or searching the archives, click here for a page with the appropriate links as well as information on how to submit papers to Acta Futura. I've had ESA's Advanced Concepts Team on my mind this weekend because long-time Centauri Dreams reader...
Giant Planets Less Likely around Sun-like Stars
We’re getting first results from the Gemini Planet Imager Exoplanet Survey (GPIES), a four-year look at 531 young, nearby stars that relies on the instrument’s capabilities at direct imaging. Data from the first 300 stars have been published in The Astronomical Journal, representing the most sensitive, and certainly the largest direct imaging survey for giant planets yet attempted. The results of the statistical analysis are telling: They suggest that planets slightly more massive than Jupiter in outer orbits around stars the size of the Sun are rare. The Gemini Planet Imager (GPI), located at the Gemini South Telescope in Chile, can achieve high contrast at small angular separations, making it possible to see exoplanets directly, as opposed to the indirect methods that have dominated the field, such as transits and radial velocity analysis. As successful as the latter have been, they are most effective with planets closer to their stars, whereas an instrument like the GPI can find...
What Sodium Chloride Means for Europa’s Ocean
We have priceless data on Europa from the Voyager and Galileo missions, but we're updating earlier interpretations thanks to new work with both the Hubble Space Telescope and the Keck Observatory on Mauna Kea (Hawaii). Thus the discovery that the yellow color visible on parts of Europa's surface in visible light is most likely sodium chloride (NaCl), familiar as table salt and the principal component of sea salt. That's an interesting result, given that it suggests a Europan ocean chemically more similar to Earth's than we had previously assumed. The re-thinking of the spacecraft data stems from the fact that Galileo was equipped with the Near-Infrared Mapping Spectrometer instrument, useful for analyzing the surface of a planetary body. What Galileo lacked, however, was a visible spectrometer to complement its near-infrared device. The problem: Chlorides are not apparent in the near-infrared. While Galileo had found water ice, it identified a substance believed to be magnesium...
Progress on Starshade Alignment, Stability
We're on the cusp of exciting developments in exoplanet detection, as yesterday's post about the Near Earths in the AlphaCen Region (NEAR) effort makes clear. Adapting and extending the VISIR instrument at the European Southern Observatory's Very Large Telescope in Chile, NEAR has seen first light and wrapped up its first observing run of Centauri A and B. What it finds should have interesting ramifications, for its infrared detection capabilities won't find anything smaller than twice the size of Earth, meaning a habitable zone discovery might rule out a smaller, more Earth-like world, while a null result leaves that possibility open. The NEAR effort relies on a coronagraph that screens out as much as possible of the light of individual stars while looking for the thermal signature of a planet. An internal coronagraph is one way to block out starlight (the upcoming WFIRST -- Wide Field Infrared Survey Telescope -- mission will carry a coronagraph within the telescope), but starshade...
First Light for NEAR: Searching for Planets around Centauri A and B
I marvel that so many of the big questions that have preoccupied me during my life are starting to yield answers. Getting New Horizons to Pluto was certainly part of that process, as a mysterious world began to reveal its secrets. But we're also moving on the Alpha Centauri question. We have a habitable zone planet around Proxima, and we're closing on the orbital space around Centauri A and B, a G-class star like our Sun and a cooler K-class orange dwarf in a tight binary orbit, the nearest stars to our own. At the heart of the research is an instrument called a thermal infrared coronagraph, built in collaboration between the European Southern Observatory and Breakthrough Watch, the privately funded attempt to find and characterize rocky planets around not just Alpha Centauri but other stars within a 20 light year radius of Earth. The coronagraph blocks out most of the stellar light while being optimized to capture the infrared frequencies emitted by an orbiting planet. Note that...
LightSail 2 Inspires Thoughts on Fictional Sails
Solar sails are a case of science fiction anticipating the scientific journals, though in an odd way. Engineer Carl Wiley (writing as Russell Saunders) described the physics of solar sailing and some early engineering concepts in the pages of John Campbell's Astounding back in 1951, but he did it in a nonfiction article of the kind the magazine routinely ran. Richard Garwin would discuss sails in the scientific literature in "Solar Sailing: A Practical Method of Propulsion within the Solar System," which ran in 1958 in the journal Jet Propulsion. Then we waited for fictional treatments, which began with Cordwainer Smith's wonderful "The Lady Who Sailed the Soul" (Galaxy, April 1960) and a string of stories from top authors of the time in just a few quick years -- Jack Vance's "Gateway to Strangeness" (Amazing Stories, 1962), Poul Anderson's "Sunjammer" (Analog 1964), Arthur C. Clarke's story of the same name, later renamed "The Wind from the Sun" (Boy's Life, 1964). Sails of the...
Exoplanet Moons in Formation?
We've been looking at circumstellar disks for quite some time, and teasing out images of actual planets within them, as witness HR 8799, where four exoplanets have been found. Just recently we saw imagery of a second world around PDS 70, both planets seen by direct imaging as they plowed through the disk of dust and gas surrounding a young star. All told, we now have more than a dozen exoplanets that have been directly imaged, though only two are in multi-planet systems. PDS 70b is sweeping out an observable gap in the disk. Image: PDS 70 is only the second multi-planet system to be directly imaged. Through a combination of adaptive optics and data processing, astronomers were able to cancel out the light from the central star (marked by a white star) to reveal two orbiting exoplanets. PDS 70 b (lower left) weighs 4 to 17 times as much as Jupiter while PDS 70 c (upper right) weighs 1 to 10 times as much as Jupiter. Credit: ESO and S. Haffert (Leiden Observatory). Now we learn that...
1999 KW4: Close-Up of a Double Asteroid
I've argued in these pages that the interstellar effort will be driven as much by planetary protection as by the human exploratory impulse. I count the latter as crucial, but we often think of planetary protection as an immediate response to a specific problem. Let's place it, though, in context. Now that we're actively cataloging asteroids that come near the Earth, we have to know how and when to react if what looks like a dangerous trajectory turns into a deadly one. That mandates a continued level of observation and progress on mitigation technologies. A small nudge counts for a lot with an object that's a long way out, and we can't exclude, for example, long period comets in our thinking about planetary protection. So mitigation strategies that begin with changing the trajectory of a small, nearby object will grow with our capabilities to encompass more distant options, and that incentivizes the building of a defensive infrastructure that can operate deep into the Solar System....
An Atomic Clock for Deep Space
NASA's Orbital Test Bed satellite is scheduled for launch via a SpaceX Falcon Heavy on June 22, with live streaming here. Although two dozen satellites from various institutions will be aboard the launch vehicle, the NASA OTB satellite itself houses multiple payloads on a single platform, including a modular solar array and a programmable satellite receiver. The component that's caught my eye, though, is the Deep Space Atomic Clock, a technology demonstrator that points to better navigation in deep space without reliance on Earth-based atomic clocks. Consider current methods of navigation. An accurate reading on a spacecraft's position depends on a measurement of the time it takes for a transmission to flow between a ground station and the vehicle. Collect enough time measurements, converting them to distance, and the spacecraft's trajectory is established. We know how to do atomic clocks well -- consider the US Naval Observatory's use of clocks reliant on the oscillation of atoms in...
A Supernova Link to Ancient Wildfires?
Did huge fires several million years ago force a transition from forest to savanna in northeast Africa? It's a tantalizing thought, as such fires have been seen as a possible factor in driving the emergence of bipedalism in our remote ancestors. Adrian Melott (University of Kansas), who looks at the question in a new paper in the Journal of Geology, notes that our precursors would have adapted to such massive changes to their habitat, evolving to support life amidst the abundant grasslands that had replaced their former tree-filled environments. The conjecture about early hominins is receiving a lot of attention, but it plays only a small role in this paper, which focuses on the linkage between supernovae activity and the period in question. Just how do we make the call on a nearby supernova? Melott has been studying the question for some time, and refers back to 2016 studies of ancient seabed deposits of iron-60 isotopes that appeared in Nature. At that time, two supernovae events,...
Explaining Luna’s Farside
The Moon’s farside used to be a convenient setting for wondrous things. After all, no one had ever seen it, setting the imagination free to insert everything from paradisaical getaways (think Shangri-La in space) to secret technologies or alien civilizations. The Soviet Luna 3 image of 1959 took the bloom off that particular rose, but we also learned through this and subsequent missions that farside really does have its differences from the familiar face we see. More craters, for one thing, and fewer of the dark plains we call maria, or ‘seas.’ We can throw in measurements made by the GRAIL mission (the Gravity Recovery and Interior Laboratory) in 2012. GRAIL was a NASA Discovery-class mission that performed gravitational field mapping of the Moon as a way of examining its internal structure, a set of two probes that worked by analyzing measured changes in distance between the two craft as small as one micron. We wound up with a map of our satellite’s gravitational field that led to...