Two Planets Around Nearby Gliese 887

Red dwarf stars have fascinated me for decades, ever since I learned that a potentially habitable planet around one might well be tidally locked. Trying to imagine a living world with a sun that didn’t move in the sky was the kind of exercise that I love about science fiction, where playing with ideas always includes a vivid visual element. What kind of landscapes would a place like this offer to the view? What kind of weather would tidal lock conjure? Stephen Baxter’s novel Proxima (Ace, 2014) is a wonderful exercise in such world-building. Thus my continuing interest in the splendid work being done by RedDots, which takes as its charter the detection of terrestrial planets orbiting red dwarfs near the Sun. You’ll recall that this is the team that discovered Proxima Centauri b, a star under increased scrutiny of late as other potential planetary signals are examined. RedDots also gave us Barnard’s Star b and has found three planets around the red dwarf GJ 1061. Now we learn about a...

read more

A 20th Anniversary Review of Ward and Brownlee’s ‘Rare Earth’

Ramses Ramirez, whose work on what he calls the Complex Life Habitable Zone was the subject of a recent Alex Tolley essay (see Are Classic Habitable Zones Too Wide for Complex Life?), joins us today with a look back at Rare Earth on the occasion of the book's 20th anniversary. Written by Peter Ward and Donald Brownlee, Rare Earth examined a wide range of factors that argued against the ubiquity of complex life in the cosmos. I remember well when it came out, as I was in the midst of writing my Centauri Dreams book for Copernicus, Ward and Brownlee's publisher, and my editor (the brilliant Paul Farrell) and I had to wrestle with the question of whether Rare Earth rendered the search for intelligent life elsewhere irrelevant. Fortunately, we plunged ahead anyway. As Dr. Ramirez shows this morning, many of the factors put forward by Ward and Brownlee can be re-examined with new data as work on exoplanets continues. Ramses is a research scientist at the Earth-Life Science Institute...

read more

A Suggestive Model for Europa’s Ocean

What we learn about Europa may resonate with other moons in the Solar System, making the study of this 'ocean world' even more valuable as we look elsewhere among the gas giants. I notice this morning that a team of researchers from the Jet Propulsion Laboratory has presented results on Europa at the Goldschmidt conference, held virtually from the 21st to 26th of this month. The work models geochemical reservoirs within Europa, analyzing the composition and properties of the core, a layer of silicates, and the ocean itself. In the absence of hard data, models will have to do, and here we learn that a plausible composition for the Europan ocean can be advanced, one that postulates the breakdown of water-bearing minerals and the release of the trapped water. Mohit Melwani Daswani is lead researcher: "We find that different minerals lose water and volatiles at different depths and temperatures. We added up these volatiles that are estimated to have been lost from the interior, and found...

read more

A Catalog of Celestial Exotica

Harmonizing with yesterday's post about a NASA grant to study technosignatures is word from Breakthrough Listen, which has released a catalog of what it calls 'exotica' or, to cite the accompanying paper: "an 865 entry collection of 737 distinct targets intended to include "one of everything" in astronomy." The idea is to produce a general reference work that can guide astronomical surveys and, in the case of Breakthrough, widen the search for technosignatures. Brian Lacki (UC-Berkeley), who is lead author of the new catalog, notes that it's not meant to be restricted to SETI, though its uses there may prove interesting. Here are the four categories of exotica the catalog defines: 'Prototypes.' Here the intent is to list one example, perhaps more, an archetype of every known type of non-transient object in the sky. According to the paper, "We emphasize the inclusion of many types of energetic and extreme objects like neutron stars..., but many quiescent examples are included too."...

read more

Advancing the Search for Technosignatures

What a pleasure to see -- after three decades -- a grant from NASA for a SETI project, and on technosignatures at that. NASA's history with SETI has been a challenging one given the subject's reception in Congress. It was in 1971 that the agency funded Barney Oliver's study on the huge array called Project Cyclops, whose price-tag would have been astronomical, but the report in which it was described provided numerous insights into the SETI effort. NASA's engagement with SETI later came under fire from William Proxmire in the Senate, resulting in the termination of SETI funding in 1982. Proxmire would later change his mind on SETI's value. Even so, the NASA Microwave Observing Program (MOP) planned as a search of 800 nearby stars in the early 1990's was again targeted in Congress and canceled shortly thereafter. The SETI effort developed in the ensuing years without government funding through efforts like Project Phoenix, which picked up the Mobile Observing Program under the...

read more

Planetary Days as a SETI Factor

Yesterday we looked at a new paper from Robert Gray on the possibility -- even likelihood -- that the kind of signal SETI is looking for would be intermittent in nature rather than continuous. The numbers tell the story: In Gray's calculations, an isotropic transmission with a range of 1,000 light years -- i.e., a continuous beacon broadcasting in all directions -- requires on the order of 1015 W to produce the kind of signal-to-noise ratio that would allow us to pick it up with facilities like those used in current SETI searches. 1015 is a big number, going beyond the current terrestrial power consumption of 1013 W by orders of magnitude and reaching 1 percent of the total power received by Earth from the Sun. Reduce the desired range of the signal to 100 light years and the requirement for isotropic broadcasts is still daunting, demanding something like 1013 W, or 10,000 1,000 MW power plants. As Gray puts it: The large power required for continuous isotropic broadcasts could...

read more

SETI: Intermittency and Detection

My guess is that most people think of SETI as doing a 'long stare' at a given star, on the theory that it may take time to acquire a possible signal from an extraterrestrial civilization. But in reality observations take place over short time periods. The Mega-channel ExtraTerrestrial Assay, known by its acronym as META, led by Harvard's Paul Horowitz and aided by The Planetary Society, could only devote a few minutes to any particular star. The same was true of the follow-on BETA (Billion-channel Extraterrestrial Assay), while targeted searches like Phoenix, led by Jill Tarter and using facilities at Green Bank (West Virginia), the Parkes 64-meter dish in Australia and the 300 meter radio telescope at Arecibo, still observed targets for less than an hour. The problem with this is that there are numerous reasons why an extraterrestrial signal might be intermittent. We've looked at this issue before, particularly in terms of 'Benford beacons,' as discussed by Greg and Jim Benford in...

read more

Trident: Keeping an Eye on the Triton Flyby

38 K, which translates to -235 Celsius or -390 Fahrenheit, is cold enough to allow atmospheric nitrogen to condense as surface frost, which appears to be what is happening on Neptune's large moon Triton. This is an intriguing place, with pinkish deposits at the enormous south polar cap that are thought to contain methane ice -- the color would derive from reactions with sunlight to form a variety of pink or red compounds. Moreover, there are geyser-like plumes here that leave dark streaks over the ices, some of them active when Voyager 2 flew past. All this and Triton's odd 'cantaloupe' terrain, still mysterious, and what appear to be landscape features produced by liquid eruptions from Triton's interior. Absorbed by Triton and its mysteries for decades now, I'm all in on a Discovery Program mission concept called Trident, now under discussion at NASA (see Firming Up the Triton Flyby for my initial take on this one). It has been 31 years since Voyager's August 25, 1989 flyby. I still...

read more

Interstellar Shift: The New Horizons Baseline

"It's fair to say that New Horizons is looking at an alien sky, unlike what we see from Earth." Those are the words of Alan Stern (Southwest Research Institute), who is principal investigator for New Horizons. A breathtaking 7 billion kilometers from Earth, the spacecraft has just returned images showing the parallax effect for two nearby stars. That 'alien sky' would look pretty much the same to the human eye except in the case of the closest stars, but the displacement of both Proxima Centauri and Wolf 359 against the deep space background is apparent in the images below. Proxima Centauri, the nearest star to our own, is shown in the top image, with Wolf 359 in the following one. Image: This two-frame animation blinks back and forth between New Horizons and Earth images of each star, clearly illustrating the different view of the sky New Horizons has from its deep-space perch. Credit: NASA/Johns Hopkins Applied Physics Laboratory/Southwest Research Institute/Las Cumbres...

read more

Destination Moon: A 70th Anniversary Appreciation

Al Jackson is back this morning with an essay examining another old friend, the 1950 film Destination Moon. Talk about fond memories! I first encountered the movie at a birthday party for a bunch of unruly 4th graders, finding the birthday boy absorbed in watching the spaceship Luna enroute to the Moon in an upstairs room while the party went on below. I stayed right there until his mother came up to scold him and bring us both back down to eat cake, dying to know what happened. Since then I've enjoyed the film numerous times, especially appreciating the Woody Woodpecker teaching sequence and the ingenious solution to the crew's problems getting everyone back home. A veteran of the Apollo days and a science fiction fan with encyclopedic knowledge of the field, Dr. Jackson gives us a look at how the film was made and illuminates Robert Heinlein's connections to the project. Time to pull out my DVD for another look. by Albert A Jackson I was two weeks away from age 7 in October 1947...

read more

Timing Titan’s Tidal Migration

Finding out that Titan is migrating away from Saturn should cause little surprise. Our own Moon moves away from the Earth at about 38 millimeters per year (even as Earth's rotation slows ever so slightly, lengthening the day by 23 microseconds every year). Titan's gravitational pull on Saturn causes frictional processes inside the giant world that ultimately impart energy to Titan, moving it away from its host in a similar way. The surprise attendant to a new paper on this phenomenon is the size of the movement, about 100 times greater than had been expected. The paper explains the migration process like this: Tidal friction within Saturn causes its moons to migrate outwards, driving them into orbital resonances that pump their eccentricities or inclinations, which in turn leads to tidal heating of the moons. What we're wrestling with here are the processes of energy dissipation in giant planets, which determine the timescale for their moons' tidal migration. The theory advanced in...

read more

KOI-456.04: Earth-like Orbit Highlights New Detection Tools

The planet candidate KOI-456.04 strikes me as significant not so much because of the similarity of its orbit with that of Earth (a 378 day orbital period around a star much like the Sun), but because of the methods used to identify its possible presence. Make no mistake, this is still very much a planet candidate, as co-authors René Heller and Michael Hippke are at pains to explain, noting that systematic measurement errors cannot be ruled out, though they estimate an 85 percent likelihood that it is there. We don’t have many examples of small planets potentially in the habitable zone of a star like ours, and this is what has received the most media attention. So let’s look at this aspect of the story quickly, because I want to move past it. If this candidate is confirmed, it looks to be less than twice the radius of the Earth, receiving about 93 percent of Earth’s insolation from its star. Make assumptions about its atmosphere and you can arrive at a surface temperature averaging...

read more

Are Classic Habitable Zones Too Wide for Complex Life?

Selection is going to be a key issue for future ground- and space-based observatories. Given lengthy observing times for targets of high interest, we have to know how to cull from our exoplanet catalog those specific worlds that can tell us the most about life in the universe. Recently, Ramses Ramirez (Earth-Life Science Institute, Tokyo Institute of Technology) went to work on the question of habitable zones for complex life, which are narrower than the classic habitable zone defined by the potential for water on the surface. In today's essay, Alex Tolley looks at Ramirez' recent paper, which examines the question in relation to the solubility of gases in lipid membranes. What emerges in this work is a constrained habitable zone suited to complex life, with limits Alex explores. The model has interesting ramifications right here in the Solar System, but it also points the way toward constraining the list of planets upon which we'll apply our emerging tools for atmospheric...

read more

Exoplanet Hunting with CubeSats

55 Cancri e is a confirmed planet, and thus a departure from our topic of the last two days, which was the act of exoplanet confirmation as regards Proxima Centauri b and c, the latter still in need of further work before it can be considered confirmed. But 55 Cancri e has its uses in offering a tight orbit around a Sun-like star that can be detected using the transit method. That was just what was needed for ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics), a technology demonstration mission involving a tiny CubeSat. Sara Seager (MIT) has been at the heart of the investigation of CubeSats as exoplanet research platforms. I think the idea is brilliant. If we want to mount the most effective search of nearby Sun-like stars for Earth analogs, multiple telescopes must be in use. CubeSats are cheap. Why not launch a fleet of them, each with the task of monitoring a single star at a time. Launched in 2017, ASTERIA was the prototype, a nanosatellite equipped with...

read more

Confirmation of Proxima Centauri c?

Hard on the heels of the confirmation of Proxima Centauri b, we get news of Proxima c, which has now been analyzed in new work by Fritz Benedict (McDonald Observatory, University of Texas at Austin). Benedict has presented his findings at the ongoing virtual meeting of the American Astronomical Society, which ends today. The work follows up and lends weight to the discovery of Proxima c announced earlier this year by a team led by Mario Damasso of Italy's National Institute for Astrophysics (INAF), which had used radial velocity methods to observe the star. We need further work, however, to say that Proxima c has been confirmed, as Dr. Benedict explained in an email this morning. But first, let's straighten out a question of identity. Yesterday, when discussing the confirmation of habitable zone world Proxima b, we talked about a second signal in data culled by the ESPRESSO spectrograph. If the second ESPRESSO signal does turn out to be a planet, it will be a third Proxima Centauri...

read more

Confirming Proxima b

I’ve always liked the image of Proxima Centauri b that the ESO’s Martin Kornmesser has conjured directly below, and have used it in a couple of previous articles about the planet. Indeed, you’ll see it propagated widely when the topic comes up. But like all of these exoplanet artist impressions, it’s made up of educated guesses, as it has to be. We don’t even know, for example, whether the world we see here even has an atmosphere, as depicted. Whether or not it does is important because it affects the possibilities for life around the star nearest to our own. Twenty times closer to its star than the Earth is to the Sun, Proxima b nonetheless receives roughly the same energy, meaning we could have surface temperatures there that would support liquid water on the surface. But the planet also receives 400 times more X-rays than the Earth, which leads the University of Geneva’s Christophe Lovis to ask: “Is there an atmosphere that protects the planet from these deadly rays? And if this...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives