There was a time when the Solar System seemed relatively well defined, with nine planets including Pluto and an asteroid belt that orbited in a niche between Mars and Jupiter. These days, in addition to the Kuiper Belt and Oort Cloud, we have to factor in all the objects that move on unusual orbits. We have a mission in the works, called Lucy, to the Jupiter Trojans, those asteroids that share the giant planet's orbit around the Sun. And today we're looking at Centaurs, which cross the orbits of giant planets and are in rapid dynamical evolution. The subject comes up because a newly discovered comet -- 2019 LD2 (ATLAS) -- is not only a Centaur, but a Centaur that is rapidly on its way to becoming another class of object, a Jupiter Family Comet (JFC). The latter are short-period comets with an orbital period of less than 20 years, largely under the influence of Jupiter. A paper by Jordan Steckloff (Planetary Science Institute) and team lays out the case: Centaurs are objects in...
Exoplanet Imaging via a Fast New Camera
The world's largest superconducting camera by pixel count has been deployed at the Subaru Telescope at Mauna Kea in Hawaii. This is a technology we'll want to watch, for it assists the effort to image exoplanets directly from the surface of the Earth, a goal that not so long ago would have seemed impossible. But it can be done, and we have a new generation of extremely large telescopes (ELTs) on the way, so the progress in support technology for such installations is heartening. The new device is called the MKID Exoplanet Camera (MEC), with the four-letter acronym standing for Microwave Kinetic Inductance Detector. A superconducting photon detector was first developed as far back as 2003 at Caltech and the Jet Propulsion Laboratory, paving the way for devices that can operate at wavelengths ranging from the far-infrared to X-rays. The MEC comes out of the laboratory of Ben Mazin at the University of California at Santa Barbara as part of an effort that includes contributions from...
Simultaneous Growth of Star and Planet?
The evolving system known as [BHB2007] 1 is a part of the Pipe Nebula (also called Barnard 59), about 600 light years away in the constellation Ophiuchus. It is part of a binary star system in formation that has been studied with the Atacama Large Millimeter Array (ALMA). Both protostars show disks in formation around them, surrounded by filaments of gas and dust drawn from the larger disk that are being referred to as 'feeding filaments.' Paola Caselli (Max Planck Institute for Extraterrestrial Physics, Germany), who made that reference in 2019, is co-author of new work on the stellar object, which gives us an unusual look at early system formation. Image: This false-color image shows the filaments of accretion around the protostar [BHB2007] 1. The large structures are inflows of molecular gas (CO) nurturing the disk surrounding the protostar. The inset shows the dust emission from the disk, which is seen edge-on. The "holes" in the dust map represent an enormous ringed cavity seen...
Arecibo in Petition and Poetry
I'm tracking an online petition conceived by Jorge Santiago Ortiz that challenges the National Science Foundation: Repair the Arecibo Observatory, do not decommission it. Given Friday's news of the planned shutdown due to problems with support cables and the dangers of possible repairs, it's good to see an effort being made to explore the possible. Ortiz points out that the observatory employs more than 120 people, is visited by some 200 scientists every year working on research projects, and draws 100,000 visitors yearly from the general population. I notice the petition is approaching 6,000 signatures this morning as people react to the Arecibo news. It is possible there is a path toward keeping the observatory alive? Also noted by Centauri Dreams reader Jeff Brandt, himself a resident of Puerto Rico, is an attempt to free the facility from National Science Foundation funding and repair the structure. Brandt notes that Jenniffer González-Colón, Puerto Rico's representative...
On Losing Arecibo
I always wanted to get to Arecibo, the magnificent 305-meter telescope that has for so long been a locus for radio astronomy research, but I was never able to make it to Puerto Rico. Now I've run out of time. The National Science Foundation doesn't make these decisions lightly but multiple engineering companies have delivered assessments that point to catastrophic failure of the telescope structure as a real possibility. Too dangerous to repair, and faced with stability issues even if it could be repaired, the Arecibo Observatory will be decommissioned. The breakdown in the vast structure has been ongoing, bits and pieces of news that added further dismay to an already dismal 2020. A support cable detached in August, resulting in an evaluation from the University of Central Florida, which manages the site. Replacement auxiliary cables were then on the way, temporary cables available, but on November 6 another main cable broke. The stresses on the second cable evidently told the...
DESTINY+: Mission to 3200 Phaethon
With successful operations at Ryugu (Hayabusa2) and Bennu (OSIRIS-REx), asteroid exploration seems to be moving full tilt, with the prospect of surface samples on the way. We can also look ahead to 16 Psyche, the object of interest for a NASA mission planned to launch in 2022, and the Lucy mission to Jupiter's trojan asteroids, with launch now scheduled for 2021. The latest asteroid entry comes in the form of an interesting collaboration between the Japan Aerospace Exploration Agency (JAXA) and the German Aerospace Center (DLR) targeting asteroid 3200 Phaethon, a flyby mission designed to launch no earlier than 2024. DESTINY+ is its name, the acronym standing for Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science (try to say all that quickly before you've had your morning coffee). The agreement for the bilateral mission was signed on November 11 as part of a joint strategy dialogue between the two space agencies. The new...
Exoplanet Atmospheres: Keeping Up with ARIEL
How is a planet’s composition related to its host star? The European Space Agency’s ARIEL mission (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is designed to probe the question, examining planetary atmospheres to determine the composition, temperature and chemical processes at work in a large sample of planetary systems. Transmission spectroscopy is the method, examining spectra as known exoplanets pass in front of, then behind their host stars. Researchers will use light filtering through the atmospheres to unlock the chemical processes within each. ARIEL will survey about 1,000 planetary systems in both visible and infrared wavelengths, probing not just chemistry but the thermal conditions that affect their composition. The mission’s focus is on super-Earths to gas giants, all with temperatures greater than 320 Celsius. I suspect that principal investigator Giovanna Tinetti (University College London) has been asked about the choice of targets to the point of...
A New Source for Plumes on Europa
How salty should we expect the ice on Europa’s surface to be? It would be helpful to know, because the salinity of the surface will be a factor in how transparent the ice shell is to radar waves. Europa Clipper will fly with an instrument called REASON -- Radar for Europa Assessment and Sounding: Ocean to Near-surface -- which will be investigating both the surface ice and the ocean beneath. Recent research, in which its principal investigator, Don Blankenship (University of Texas), is involved is offering insights into the salinity of the ice. Here’s a bit of background on REASON from a NASA page on Europa Clipper: Depending on their wavelength, radio waves can either bounce off or penetrate different materials. REASON will use high frequency (HF) and very high frequency (VHF) radio signals to penetrate up to 18 miles (30 kilometers) into Europa’s ice to look for the moon’s suspected ocean, measure ice thickness, and better understand the icy shell's structure. The instrument will...
Radioactive Elements and Planetary Habitability
A planetary dynamo may be a key factor in creating the conditions needed for life. And creating that dynamo seems to depend on the radioactive decay of thorium and uranium, generating internal heating and driving plate tectonics. Let's carry this line of thought further, though, as the authors of a new paper out of UC-Santa Cruz do, and point out that these heavy elements are necessary to create a magnetic field like Earth's, which protects us from damaging radiation. In the rocky planets, magnetic fields are generated by convection in a metallic core, which in turn is driven by heat extracted into the mantle (Nimmo 2015; Labrosse 2015; Boujibar et al. 2020). Since mantle radiogenic heat production controls how much heat is extracted from the core, it will also influence the presence or absence of a dynamo. Similarly, heat production will control the mantle temperature and thus the rate of silicate melting and volcanism. That quote is from the paper, whose lead author is Francis...
An Unusual (and Promising) Brown Dwarf Detection
The naming of names is quite a project when it comes to new astronomical objects, and given the sheer numbers -- 300 million habitable planets around G- and K-class stars, for example -- we might do better to stick with simple identifiers. On the other hand, it's a bit charming that a new brown dwarf known by its identifier as BDR J1750+3809 has been dubbed 'Elegast' by the discovery team. This is the first substellar object found through radio observations. The name is both appropriate and specific to the discovery space. Elegast appears in a poem in Middle Dutch (12th or 13th Century) called 'Karel ende Elegast,' with the character Elegast being a vassal of Charlemagne who seems to be king of the elves (Wikipedia to the rescue, vindicating once again my decision to send them a monthly donation). The Dutch connection is that the radio work comes out of LOFAR (Low-Frequency Array), which is currently the largest radio telescope operating at the lowest frequencies that we can observe...
Europa: Night-time Glow a New Tool for Analysis
When it comes to Europa, it's the surface that counts as we try to learn more about the ocean beneath. Maybe one day we'll be able to get some kind of probe through the ice, but for now we have to think about things like upwellings of water that percolate up through cracks in the frozen landscape, and unusual areas like Europa's 'chaos' terrain. Here, fractures and evident 'rafts' of ice show disruptions where the icy surface of the moon experiences Jupiter's tidal effects. Image: The surface of Jupiter's moon Europa features a widely varied landscape, including ridges, bands, small rounded domes and disrupted spaces that geologists called "chaos terrain." This newly reprocessed image, along with two others along the same longitude, was taken by NASA's Galileo spacecraft on Sept. 26, 1998, and reveals details of diverse surface features on Europa. Credit: NASA/JPL-Caltech/SETI Institute. What kind of materials might we find frozen into the cracks and grooves of such terrain? Europa...
On 300 Million Habitable Zone Planets
We’ve talked about the Drake Equation a good deal over the years, but I may not have mentioned before that when Frank Drake introduced it in 1961, it was for the purpose of stimulating discussion at a meeting at the National Radio Astronomy Observatory in Green Bank, West Virginia that was convening to discuss the nascent field of SETI. This was in the era of Drake’s Project Ozma and the terms of the SETI debate were hardly codified. Moreover, as Nadia Drake recounts in this absorbing look back at her father’s work in that era, Drake had spent the time immediately before the meeting trying to line up Champagne for UC-Berkeley biochemist Melvin Calvin, who was about to win the Nobel Prize. So there was a certain ad hoc flavor to the equation, one that Drake assembled more or less on the fly to clarify the factors to be considered in looking for other civilizations. How Drake did all this while trying to locate a sufficient quantity of good Champagne in the rural West Virginia of 1961...
A Fast Radio Burst in the Milky Way
A sequence of new observations gives us a leading candidate to explain Fast Radio Bursts (FRBs). These powerful bursts of radio waves, lasting but milliseconds, first turned up in our data in 2007 and have been a mystery ever since. As they were found in other galaxies, it has been difficult to determine their exact location, and they were impossible to predict as most seemed to be one-off events, although astronomers have subsequently found some that do repeat. Among the possible causes of FRBs, stellar remnants have been put forward, with the kind of highly magnetic neutron stars called magnetars receiving close scrutiny because their magnetic fields could be the engine driving the bursts. We now have three papers in Nature that give us tight observational evidence of the kind that has been lacking. Between the three, we have data that for the first time link an FRB in our own galaxy to a magnetar, the object known as SGR 1935+2154, located in the constellation Vulpecula. Image:...
Voyager 2: Back in Two-Way Communication
It's reassuring to hear that we're in two-way contact once again with Voyager 2. Since last March, controllers have been limited to receiving X-band (8 to 12 GHz) downlink data, with no capability to uplink commands to the craft via S-band (2 to 4 GHz). This has been a problem unique to Voyager 2 thanks to its trajectory. The Deep Space Network's three radio antenna facilities -- Canberra, Australia; Goldstone, California and Madrid, Spain -- are positioned so that at least one facility is available for communications with our far-flung space probes. While Voyager 1 can talk to us via the two northern hemisphere DSN stations, Voyager 2's close flyby of Neptune's large moon Triton in 1989 bent its course well south of the ecliptic. 18.8 billion kilometers from Earth, Voyager 2 can only line up on Canberra, and the antenna called Deep Space Station 43 (DSS43) has been the only southern hemisphere dish with a transmitter capable of reaching the craft at the right frequency to send...
Speculations on Starless Worlds
Yesterday’s paper from Matt Clement and team reminded us of the enormous transformation that can take place in a planetary system as it lurches toward eventual stability. Gas giants have so much to say about how this process occurs, with their gravitational interactions sometimes ejecting other worlds from the system. Ejected planets are often called ‘rogue’ planets because they wander the galaxy without orbiting a star. Their numbers may be vast. Clement and team think we may have ejected an ice giant from our early system, as we discussed yesterday. Whatever the case, I’ve been talking about rogue planets for about ten years, and as I look back, I run into intriguing finds like PSO J318.5-22, which is described in a 2013 paper from Michael Liu and colleagues (citation below). Says Liu (University of Hawaii): "We have never before seen an object free-floating in space that looks like this. It has all the characteristics of young planets found around other stars, but it is drifting...
Jupiter, Saturn and the Early Solar System
The days when scientists assumed our Solar System would be something of a template for planetary systems elsewhere are long past. The issue now is to delve deeper into system architectures to figure out what happens in their infancy and how they evolve. Working backward from today's Solar System is one way to approach the problem. Thus Matt Clement (Carnegie Institution for Science), who has led a recent study into the formation of Jupiter and Saturn, hoping to determine how they wound up in their present orbits. Says Clement: "We now know that there are thousands of planetary systems in our Milky Way galaxy alone. But it turns out that the arrangement of planets in our own Solar System is highly unusual, so we are using models to reverse engineer and replicate its formative processes. This is a bit like trying to figure out what happened in a car crash after the fact--how fast were the cars going, in what directions, and so on." Image: New work led by Carnegie's Matt Clement reveals...