How do we go about crafting a spacefaring civilization? Nick Nielsen has been exploring the issues involved in terms of the choices cultures make and their conception of their future. Change the society and you change the outcome, with huge ramifications for our potential growth off-planet and on. The history of so-called 'futurism' tells us that visions of human potential differ according to the desirability (or lack of it) of deploying resources to space research, and it is a telling fact that many analyses extant today leave space out of the equation altogether. Have a look, then, at possible civilizations, their outcomes dictated by the assumptions they draw on as they attempt to pass through a bottleneck defined by a planetary society negotiating its relationship with the cosmos. by J. N. Nielsen 1. Space Infrastructure Architectures 2. The Problems of Futurism 3. Beyond Institutionalized Futurism 4. Futurism at the Scale of Civilization 5. Six Possible Civilizations 5a. Space...
TOI 451: Three Planets in a Stellar Stream
The planets orbiting the young star TOI 451 should be useful for astronomers working on the evolution of atmospheres on young planets. This is a TESS find, three planets tracked through their transits and backed by observations from the now retired Spitzer Space Telescope, with follow-ups as well from Las Cumbres and the Perth Exoplanet Survey Telescope. TOI 451 (also known as CD-38 1467) is about 400 light years out in Eridanus, a star with 95% of the Sun's mass, some 12% smaller and rotating every 5.1 days. That rotation is interesting, as it's more than five times faster than our Sun rotates, a marker for a young star, and indeed, astronomers have ways of verifying that the star is only about 120 million years old. Here the Pisces-Eridanus stream, only discovered in 2019, becomes a helpful factor. A stream of stars forms out of gravitational interactions between our galaxy and a star cluster or dwarf galaxy, shoe-horning stars out of their original orbit to form an elongated flow....
Extraterrestrial: On ‘Oumuamua as Artifact
The reaction to Avi Loeb's new book Extraterrestrial (Houghton Mifflin Harcourt, 2021) has been quick in coming and dual in nature. I'm seeing a certain animus being directed at the author in social media venues frequented by scientists, not so much for suggesting the possibility that 'Oumuamua is an extraterrestrial technological artifact, but for triggering a wave of misleading articles in the press. The latter, that second half of the dual reaction, has certainly been widespread and, I have to agree with the critics, often uninformed. Image credit: Kris Snibbe/Harvard file photo. But let's try to untangle this. Because my various software Net-sweepers collect most everything that washes up on 'Oumuamua, I'm seeing stark headlines such as "Why Are We So Afraid of Extraterrestrials," or "When Will We Get Serious about ET?" I'm making those particular headlines up, but they catch the gist of many of the stories I've seen. I can see why some of the scientists who spend their working...
Crafting the Bussard Ramjet
The Bussard ramjet is an idea whose attractions do not fade, especially given stunning science fiction treatments like Poul Anderson’s novel Tau Zero. Not long ago I heard from Peter Schattschneider, a physicist and writer who has been exploring the Bussard concept in a soon to be published novel. In the article below, Dr. Schattschneider explains the complications involved in designing a realistic ramjet for his novel, with an interesting nod to a follow-up piece I’ll publish as soon as it is available on the work of John Ford Fishback, whose ideas on magnetic field configurations we have discussed in these pages before. The author is professor emeritus in solid state physics at Technische Universität Wien, but he has also worked for a private engineering company as well as the French CNRS, and has been director of the Vienna University Service Center for Electron Microscopy. With more than 300 research articles in peer-reviewed journals and several monographs on electron-matter...
Technosignatures: Looking to Planetary Atmospheres
While we often think about so-called Dysonian SETI, which looks for signatures of technology in our astronomical data, as a search for Dyson spheres, the parameter space it defines is getting to be quite wide. A technosignature has to be both observable as well as unique, to distinguish it from natural phenomena. Scientists working this aspect of SETI have considered not just waste heat (a number of searches for distinctive infrared signatures of Dyson spheres have been run), but also artificial illumination, technological features on planetary surfaces, artifacts not associated with a planet, stellar pollution and megastructures. Thus the classic Dyson sphere, a star enclosed by a swarm or even shell of technologies to take maximum advantage of its output, is only one option for SETI research. As Ravi Kopparapu (NASA GSFC) and colleagues point out in an upcoming paper, we can also cross interestingly from biosignature searches to technosignatures by looking at planetary atmospheres....
Interstellar Travel and Stellar Evolution
The stars move ever on. What seems like a fixed distance due to the limitations of our own longevity morphs over time into an evolving maze of galactic orbits as stars draw closer to and then farther away from each other. If we were truly long-lived, we might ask why anyone would be in such a hurry to mount an expedition to Alpha Centauri. Right now we’d have to travel 4.2 light years to get to Proxima Centauri and its interesting habitable zone planet. But 28,000 years from now, Alpha Centauri -- all three stars -- will have drawn to within 3.2 light years of us. But we can do a lot better than that. Gliese 710 is an M-dwarf about 64 light years away in the constellation Serpens Cauda. For the patient among us, it will move in about 1.3 million years to within 14,000 AU, placing it well within the Oort Cloud and making it an obvious candidate for worst cometary orbit disruptor of all time. But read on. Stars have come much closer than this. [Addendum: A reader points out that some...
‘Farfarout’ Confirmed Far Beyond Pluto
One thing is certain about the now confirmed object that is being described as the most distant ever observed in our Solar System. We’ll just be getting used to using the official designation of 2018 AG37 (bestowed by the Minor Planet Center according to IAU protocol) when it will be given an official name, just as 2003 VB12 was transformed into Sedna and 2003 UB313 became Eris. It’s got a charming nickname, though, the jesting title “Farfarout.” I assume the latter comes straight from the discovery team, and it’s a natural because the previous most distant object, found in 2018, was dubbed “Farout” by the same team of astronomers. That team includes Scott Sheppard (Carnegie Institution for Science), Chad Trujillo (Northern Arizona University) and David Tholen (University of Hawai?i). Farout, by the way, has the IAU designation 2018 VG18, but has not to my knowledge received an official name. Trans-Neptunian objects can be useful for investigating the gravitational effects of...
Imaging Alpha Centauri’s Habitable Zones
We may or may not have imaged a planet around Alpha Centauri A, possibly a ‘warm Neptune’ at an orbital distance of roughly 1 AU, the distance between Earth and the Sun. Let’s quickly move to the caveat: This finding is not a verified planet, and may in fact be an exozodiacal disk detection or even a glitch within the equipment used to see it. But as the paper notes, the finding called C1 is “is not a known systematic artifact, and is consistent with being either a Neptune-to-Saturn-sized planet or an exozodiacal dust disk.“ So this is interesting. As it may be some time before we can make the call on C1, I want to emphasize the importance not so much of the possible planet but the method used to investigate it. For what the team behind a new paper in Nature Communications has revealed is a system for imaging in the mid-infrared, coupled with long observing times that can extend the capabilities of ground-based telescopes to capture planets in the habitable zone of other nearby...
A Black Cloud of Computation
Moore’s Law, first stated all the way back in 1965, came out of Gordon Moore’s observation that the number of transistors per silicon chip was doubling every year (it would later be revised to doubling every 18-24 months). While it’s been cited countless times to explain our exponential growth in computation, Greg Laughlin, Fred Adams and team, whose work we discussed in the last post, focus not on Moore’ Law but a less publicly visible statement known as Landauer’s Principle. Drawing from Rolf Landauer’s work at IBM, the 1961 equation defines the lower limits for energy consumption in computation. You can find the equation here, or in the Laughlin/Adams paper cited below, where the authors note that for an operating temperature of 300 K (a fine summer day on Earth), the maximum efficiency of bit operations per erg is 3.5 x 1013. As we saw in the last post, a computational energy crisis emerges when exponentially increasing power requirements for computing exceed the total power...
Cloud Computing at Astronomical Scales
Interesting things happen to stars after they've left the main sequence. So-called Asymptotic Giant Branch (AGB) stars are those less than nine times the mass of the Sun that have already moved through their red giant phase. They're burning an inner layer of helium and an outer layer of hydrogen, multiple zones surrounding an inert carbon-oxygen core. Some of these stars, cooling and expanding, begin to condense dust in their outer envelopes and to pulsate, producing a 'wind' off the surface of the star that effectively brings an end to hydrogen burning. Image: Hubble image of the asymptotic giant branch star U Camelopardalis. This star, nearing the end of its life, is losing mass as it coughs out shells of gas. Credit: ESA/Hubble, NASA and H. Olofsson (Onsala Space Observatory). We're on the way to a planetary nebula centered on a white dwarf now, but along the way, in this short pre-planetary nebula phase, we have the potential for interesting things to happen. It's a potential...
Parsing Exoplanet Weather
Although it seems so long ago as to have been in another century (which it actually almost was), the first detection of an exoplanet atmosphere came in the discovery of sodium during a transit of the hot Jupiter HD 209458b in 2002. To achieve it, researchers led by David Charbonneau used the method called transmission spectroscopy, in which they analyzed light from the star as it passed through the atmosphere of the planet. Since then, numerous other compounds have been found in planetary atmospheres, including water, methane and carbon dioxide. Scientists also expect to find the absorption signatures of metallic compounds in hot Jupiters, and these have been detected in brown dwarfs as well as ultra-hot Jupiters. Now we have new work out of SRON Netherlands Institute for Space Research and the University of Groningen. Led by Marrick Braam, a team of astronomers has found evidence for chromium hydride (CrH) in the atmosphere of the planet WASP-31b, a hot Jupiter with a temperature of...
Magnetic Reconnection in New Thruster Concept
At the Princeton Plasma Physics Laboratory (PPPL) in Plainsboro, New Jersey, physicist Fatima Ebrahimi has been exploring a plasma thruster that, on paper at least, appears to offer significant advantages over the kind of ion thruster engines now widely used in space missions. As opposed to electric propulsion methods, which draw a current of ions from a plasma source and accelerate it using high voltage grids, a plasma thruster generates currents and potentials within the plasma itself, thus harnessing magnetic fields to accelerate the plasma ions. What Ebrahimi has in mind is to use magnetic reconnection, a process observed on the surface of the Sun (and also occurring in fusion tokamaks), to accelerate the particles to high speeds. The physicist found inspiration for the idea in PPPL's ongoing work in fusion. Says Ebrahimi: "I've been cooking this concept for a while. I had the idea in 2017 while sitting on a deck and thinking about the similarities between a car's exhaust and the...
The Xallarap Effect: Extending Gravitational Microlensing
'Xallarap' is parallax spelled backward (at least it's not another acronym). And while I doubt the word will catch on in common parlance, the effect it stands for is going to be useful indeed for astronomers using the Nancy Grace Roman Space Telescope. This is WFIRST -- the Wide Field Infrared Survey Telescope -- under its new name, a fact I mention because I think this is the first time we've talked about the mission since the name change in 2020. Image: High-resolution illustration of the Roman spacecraft against a starry background. Credit: NASA's Goddard Space Flight Center. While a large part of its primary mission will be devoted to dark energy and the growth of structure in the cosmos, a significant part of the effort will be directed toward gravitational microlensing, which should uncover thousands of exoplanets. This is where the xallarap effect comes in. It's a way of drawing new data out of a microlensed event, so that while we can continue to observe planets around a...
How Common Are Giant Planets around Red Dwarfs?
A planet like GJ 3512 b is hard to explain. Here we have a gas giant that seems to be the result of gravitational instabilities inside the ring of gas and dust that circles its star. This Jupiter-like world is unusual because of the ratio between planet and star. The Sun, for example, is about 1050 times more massive than Jupiter. But for GJ 3512 b, that ratio is 270, a reflection of the fact that this gas giant orbits a red dwarf with about 12 percent of the Sun’s mass. How does a red dwarf produce a debris disk that allows such a massive planet to grow? Image: Comparison of GJ 3512 to the Solar System and other nearby red-dwarf planetary systems. Planets around solar-mass stars can grow until they start accreting gas and become giant planets such as Jupiter, in a few millions of years. However, up to now astronomers suspected that, except for some rare exceptions, small stars such as Proxima, TRAPPIST-1, Teegarden’s star, and GJ 3512 were not able to form Jupiter mass planets....