Just how useful is oxygen as a biosignature? It’s a question we’ve examined before, always with the cautionary note that there are non-biological mechanisms for producing oxygen which could make any detected biosignature ambiguous. But let’s go deeper into this, thanks to a new paper on ‘oxygen false positives’ out of the University of California at Santa Cruz. The paper, produced by lead author Joshua Krissansen-Totton and team, offers scenarios that can place an oxygen detection in the broader context that would distinguish any such find as biological.

Let’s begin with the fact that in addition to its obvious interest because of Earth’s history, photosynthesis involving oxygen requires the likely ubiquitous carbon dioxide and water we would expect on habitable zone planets. Helpfully, oxygen should be readily detectable on exoplanets because of its absorption features, which are prominent not only in visible light but in the near infrared and thermal infrared, if we include ozone. Space-based missions as well as ground-based Extremely Large Telescopes should be able to find oxygen signatures.

I found the authors’ discussion of M-dwarfs fascinating. We have to weigh our strategies with these small stars in mind because they are the ones for which atmospheric spectroscopy will first become available for habitable zone rocky planets. Already we’re in deep water, because the oxygen we might find on such worlds could have complex origins. From the paper:

…several features of M?dwarfs make them susceptible to non?biological oxygen accumulation. In particular, the extended pre?main sequence of late M?dwarfs could yield habitable zone terrestrial planets with hundreds or thousands of bar O2 from XUV?driven hydrogen loss (Luger & Barnes, 2015). At least some of this oxygen will likely dissolve in a surface magma ocean and be sequestered in the mantle, but retaining oxygen?rich atmospheres is still possible, especially for highly irradiated terrestrial planets…

Not only does this throw a spanner into the works for biosignature detection, but it could act as an active deterrent to the emergence of life by making prebiotic chemistry impossible. All this is under active study, as the paper’s numerous citations make clear, with the authors adding that “photochemical runaways yielding O2?CO rich atmospheres remain a strong possibility for late M dwarfs.” These older red dwarfs tend to be the ones of higher astrobiological interest given that younger stars in this category are given to higher amounts of flare activity.

All of this points to the problems of oxygen as a biosignature and the need to examine how non-biological oxygen can accumulate on the planets we’re interested in, and this extends to planets around F-, G- and K-class stars as well, although the problem here seems highly dependent on the initial inventory of volatile elements, as the authors make clear. It’s also clear we have a great deal to learn about oxygen production via non-biological methods like hydrogen escape and water photodissociation, all reviewed in this crisp and clearly written paper. The interplay between atmosphere and geochemistry is the study’s central point:

The robustness of oxygen biosignatures rests on the assumption that for temperate planets with effective cold traps, small abiotic oxygen source fluxes from H escape will be overwhelmed by geological sinks. To test this assumption, it is necessary to model the redox [oxidation-reduction] evolution of terrestrial planet from formation onwards. This is because planetary redox evolution depends on both the initial state of the atmosphere and mantle after the magma ocean has solidified, and on the subsequent internal evolution and atmospheric state. Interior evolution dictates crustal production rates and outgassing fluxes, which determine the efficiency of geologic sinks of oxygen.

The authors use a model of planetary development that includes a wide range of initial volatile elements in varying abundance, taking rocky worlds all the way from their original formation up through eras of geochemical cycling lasting billions of years. The goal is to produce scenarios in which a lifeless planet around various stellar types could evolve with atmospheric oxygen. Context is all, meaning we have to know what other molecules beyond oxygen are available, and the range of outcomes is wide indeed. For a given scenario, distinguishing between false positives and genuine biosignatures is the key, and the paper explores the various options.

Image: By varying the initial inventory of volatile elements in a model of the geochemical evolution of rocky planets, researchers obtained a wide range of outcomes, including several scenarios in which a lifeless rocky planet around a sun-like star could evolve to have oxygen in its atmosphere. Credit: J. Krissansen-Totton).

The photodissociation referred to above occurs as ultraviolet light from the star breaks water molecules into hydrogen and oxygen in the upper atmosphere, with the lighter hydrogen escaping into space and the oxygen remaining as a potentially deceptive biosignature. But the paper also examines how oxygen can be removed from an atmosphere, through outgassing of carbon dioxide and hydrogen, which will react with oxygen. The weathering of rock also affects oxygen levels, all factors that need to be included in this model of geochemical evolution.

The model is given weight when we see that it can reproduce the evolution of the atmosphere both on the Earth and on Venus. Using it, then, we can explore possibilities. We can imagine a planet with more water than Earth, one whose deep oceans preclude weathering of rock that would remove oxygen. Conversely, on still molten young worlds with only a small inventory of water, the magma surface can solidify quickly, with water remaining in the atmosphere. Oxygen remains behind as hydrogen in the upper atmosphere escapes. Says Krissansen-Totton:

“The typical sequence is that the magma surface solidifies simultaneously with water condensing out into oceans on the surface. On Earth, once water condensed on the surface, escape rates were low. But if you retain a steam atmosphere after the molten surface has solidified, there’s a window of about a million years when oxygen can build up because there are high water concentrations in the upper atmosphere and no molten surface to consume the oxygen produced by hydrogen escape.”

Another scenario involves high amounts of carbon dioxide in relation to water, resulting in a runaway greenhouse. Here again, as the paper notes, we’ve got an oxygen problem:

The lack of liquid surface water precludes CO2?drawdown via silicate weathering… Reactions between supercritical water and silicates will be severely kinetically limited by sluggish solid state diffusion, and are therefore assumed to be negligible (Zolotov et al., 1997). Consequently, a dense CO2 atmosphere and supercritical surface temperature persist indefinitely… despite the planet residing in the habitable zone. Moreover, there is sufficient steam in the atmosphere to ensure diffusion?limited hydrogen escape provides an appreciable source flux of oxygen…

Its focus on the geochemical and thermal evolution of a planet in the habitable zone, emphasizing interactions between crust and atmosphere, make this a noteworthy addition to the ongoing attempt to understand biosignatures. We may well get a biosignature detection involving oxygen relatively quickly once we have the tools in place to delve into rocky worlds in the habitable zone. The effort to sort out its meaning will take considerable time.

I’l stand by a previous prediction: Initial euphoria will quickly wear off as we consider how deeply ambiguous any biosignature detection is going to be. I think we’ll be seeing plenty of interesting hints, but it will be many years before we can say with certainty that we have found life around another star.

The paper is Krissansen-Totton et al., “Oxygen False Positives on Habitable Zone Planets Around Sun?Like Stars,” Vol. 2, Issue 2 (June 2021). Full text.

tzf_img_post