Nu2 Lupi is a G-class star not all that far away in astronomical terms (48 light years) in the constellation Lupus, its proximity verified by parallax measurements and firmed up by the Hipparcos satellite. This is one of the closest G-class stars to our own, and it’s a fast mover in other ways, with a high radial velocity. Its age is estimated at roughly 12 billion years, making it one of the oldest stars near our system. HARPS spectrograph data pulled up three planets here in 2019, two of them later found to transit. And now we have, unexpectedly, a third transit. The surprising nature of the third relates to the distance of the third planet from the star. The two inner worlds, with masses between Earth’s and Neptune’s, take 12 and 28 days to orbit Nu2 Lupi. The third takes 107 days, far enough out that a transit seemed unlikely. The ratio of the diameter of the star to the diameter of the orbit comes into play in determining the probability of a transit. We have the European Space...
New Constraints on Exoplanet Photosynthesis
Most autotrophic organisms on Earth use photosynthesis to work their magic. Indeed, photosynthesis accounts for about 99 percent of Earth's entire biomass (a figure likely to change as we learn more about what lies beneath the surface). The process allows organic matter to be synthesized from inorganic elements, drawing on solar radiation as the energy source, and providing the oxygen levels needed to drive complex, multicellular life. Does photosynthesis occur in other star systems? We know that it emerged early on Earth, and can trace its development back to the Great Oxidation Event in the range of 2.4 billion years ago, although its origins are still under scrutiny. In a new paper, lead author Giovanni Covone (University of Naples) and colleagues examine the conditions needed for oxygen-based photosynthesis to develop on an Earth-like planet not just at Earth’s level of stellar flux but throughout the classical habitable zone. The key to the study is stellar radiation as received...
How Far Can Civilization Go?
Robert H. Gray, author of The Elusive Wow: Searching for Extraterrestrial Intelligence, has searched for radio signals from other worlds using the Very Large Array and other radio telescopes. You'll find numerous links to his work in the archives here. In today's essay, Gray takes a look at a classic benchmark for assessing the energy use of civilizations, introducing his own take on Earth's position in the hierarchy and how these calculations affect the ongoing SETI effort. His article on the extended Kardashev scale appeared in The Astronomical Journal https://iopscience.iop.org/article/10.3847/1538-3881/ab792b. Photograph by Sharon Hoogstraten. by Robert H. Gray Human civilization has come an amazingly long way in a short time. Not long ago, our major source of energy was muscle power, often doing hard work, while today much more energy is available from fuels, fission, hydro, solar, and other sources without breaking a sweat. How far can civilization go? It's probably impossible...
A Chronological Look at a Transiting Earth
Call it the Earth Transit Zone, that region of space from which putative astronomers on an exoplanet could see the Earth transit the Sun. Lisa Kaltenegger (Cornell University) is director of the Carl Sagan Institute and the author of a 2020 paper with Joshua Pepper (LeHigh University) that examined the stars within the ETZ (see Seeing Earth as a Transiting World). While Kaltengger and Pepper identified 1004 main sequence stars within 100 parsecs that would see Earth as a transiting planet, Kaltenegger reminds us that stars are ever in motion. Given the abundant resources available in the European Space Agency's Gaia eDR3 catalog, why not work out positions and stellar motions to examine the question over time? After all, there are SETI implications here. We study planetary atmospheres using data taken during transits. Are we, in turn, the subject of such study from astronomers elsewhere in the cosmos? Thus Kaltenegger's new paper in Nature, written with Jackie Faherty (American...
Mixing and Growth in the Sun’s Protoplanetary Disk
The Allende meteorite is the largest carbonaceous chondrite meteorite ever discovered. Falling over Mexico's state of Chihuahua in 1969 and breaking up in the atmosphere, the object yielded over two tons of material that have provided fodder for scientists interested in the early days of the Solar System. The meteorite contains numerous calcium-aluminum-rich inclusions (CAIs), which are considered to be the first kind of solids formed in the system 4.5 billion years ago. Samples of the Allende meteorite are considered 'primitive,' which in this parlance means unaffected by significant alteration since formation. Now a team led by Tom Zega (University of Arizona Lunar and Planetary Laboratory) has gone to work on a dust grain from this object, in order to simulate the conditions under which it formed in the Sun's protoplanetary disk. The grain was drawn from one of several CAIs discovered in the Allende meteorite sample. Analysis of the sample's chemistry and crystal structure...
Email Subscribers Take Note
Google will no longer be supporting its email distribution service as of July 1, and I am preparing for this through the work of my friend Frank Taylor, who is fine-tuning a replacement. However, I've had a few reports already of emails not being delivered. So if you are an email subscriber to Centauri Dreams, please bear with us as Frank gets the new service up and running. This may take a few more days. There will be no need to re-subscribe, as the existing subscription list will be transferred to the new feed.
An AI Toolbox for Space Research
Let's take a brief break from research results and observational approaches to consider the broader context of how we do space science. In particular, what can we do to cut across barriers between different disciplines as well as widely differing venues? Working on a highly directed commercial product is a different process than doing academic research within the confines of a publicly supported research lab. And then there is the question of how to incorporate ever more vigorous citizen science. SpaceML is an online toolbox that tackles these issues with a specific intention of improving the artificial intelligence that drives modern projects, with the aim of boosting interdisciplinary work. The project's website speaks of "building the Machine Learning (ML) infrastructure needed to streamline and super-charge the intelligent applications, automation and robotics needed to explore deep space and better manage our planetary spaceship." I'm interested in the model developing here,...
Finding the Missing Link: How We Could Discover Interstellar Quantum Communications
Six decades of SETI have yet to produce a detection. Are there strategies we have missed? In today’s essay, Michael Hippke takes us into the realm of quantum communication, explaining how phenomena like ‘squeezed light’ can flag an artificial signal with no ambiguity. Quantum coherence, he argues, can be maintained over interstellar distances, and quantum methods offer advantages in efficiency and security that are compelling. Moreover, techniques exist with commercially available equipment to search for such communications. Hippke is a familiar face on Centauri Dreams, having explored topics from the unusual dimming of Boyajian’s Star to the detection of exomoons using what is known as the orbital sampling effect. He is best known for his Transit Least Squares (TLS) exoplanet detection method, which is now in wide use and has accounted for the discovery of ~ 100 new worlds. An astrophysics researcher at Sonneberg Observatory and visiting scholar for Breakthrough Listen at...
Mapping the Boundary of the Heliosphere
Between the Solar System and interstellar space is a boundary layer called the heliosheath. Or maybe I should define this boundary as being between the inner, planetary part of the Solar System and interstellar space. After all, we consider the Oort Cloud as part of our own system, yet it begins much further out. Both Voyagers have crossed the region where the Sun's heliosphere ends and interstellar space begins, while they won't reach the Oort, by some estimates, for another 300 years. The broader region is called the heliopause, a place where the outflowing solar wind of protons, electrons and alpha particles (two protons and two neutrons tightly bound) encounters what we can call the interstellar wind, itself pushing up against the heliosphere and confining the solar wind-dominated region to a bubble. We now learn that this boundary region has been mapped, showing interactions at the interface. A paper describing this feat has now appeared, with Dan Reisenfeld (Los Alamos National...
Brown Dwarfs & Rogue Planets as JWST Targets
About 1,000 light years away in the constellation Perseus, the stellar nursery designated NGC 1333 is emerging as a priority target for astronomers planning to use the James Webb Space Telescope. Brown dwarfs come into play in the planned work, as do the free-floating 'rogue' planets we discussed recently. For NGC 1333 is a compact, relatively nearby target, positioned at the edge of a star-forming molecular cloud. It's packed with hundreds of young stars, many of them hidden from view by dust, a venue in which to observe star formation in action. Hoping to learn more about very low mass objects, Aleks Scholz (University of St Andrews, UK) lays out plans for using JWST to chart the distinctions between objects that emerge out of gravitational collapse of gas and dust clouds, and objects that grow through accretion inside a circumstellar disk. Says Scholz: "The least massive brown dwarfs identified so far are only five to 10 times heftier than the planet Jupiter. We don't yet know...
NEO Surveyor: Proposed Asteroid Surveillance Mission
Near-Earth Object Surveyor is a proposed space telescope working at infrared wavelengths, an instrument that just completed a successful mission review and now moves on to the next phase of mission development. In NASA parlance, the upcoming Key Decision Point-B moves into Preliminary Design territory. Getting a spacecraft from concept to flight is a long process, but let's back out to the broader picture. Planetary defense is all about finding objects that could impact the Earth with serious consequences. That means setting size targets, and on that score, we're making progress. In 2010, NASA announced that it had identified 90 percent of all Near Earth Objects larger than 1,000 meters. That moved us to the next target, NEOs larger than 140 meters in size, a goal set by the National Aeronautics and Space Administration Act of 2005. JPL now says about 40% of NEOs within this size range have been identified. So with this work in progress, what does NEO Surveyor bring to the table? For...
A Visualization of Galactic Settlement
When the question of technosignatures at Alpha Centauri came up at the recent Breakthrough Discuss conference, the natural response was to question the likelihood of a civilization emerging around the nearest stars to our own. We kicked that around in Alpha Centauri and the Search for Technosignatures, focusing on ideas presented by Brian Lacki (UC-Berkeley) at the meeting. But as we saw in that discussion, we don't have to assume that abiogenesis has to occur in order to find a technosignature around any particular star. Ask Jason Wright (Penn State) and colleagues Jonathan Carroll-Nellenback and Adam Frank (University of Rochester) as well as Caleb Scharf (Columbia University), whose analysis of galaxies in transition has now produced a fine visual aid. Described in a short paper in Research Notes of the AAS, the simulation makes a major point: If civilizations last long enough to produce star-crossing technologies, then technosignatures may be widespread, found in venues across...
Liquid Water on a Free Floating Planet’s Moon?
As we learn more about how planetary systems form, it's becoming accepted that a large number of planets are being ejected from young systems because of their interactions with more massive worlds. I always referred to these as 'rogue planets' in previous articles on the subject, but a new paper from Patricio Javier Ávila (University of Concepción, Chile) and colleagues makes it clear that the term Free Floating Planet (FFP) is now widespread. A new acronym for us to master! There have been searches to try to constrain the number of free floating planets, though the suggested ranges are wide. Microlensing seems the best technique, as it can spot masses we cannot otherwise see through their effect on background starlight. Of these, the estimates come in at around 2 Jupiter-mass planets and 2.5 terrestrial-class rocky worlds per star that have been flung into the darkness. This is a vast number of planets, but we have to be wary of mass uncertainties, as the cut-off between...
A Rapidly Growing Catalog of Fast Radio Bursts
Hard to believe that Fast Radio Bursts (FRBs) were only discovered in 2007, as it seems we've been puzzled by them for a lot longer. Thus far about 140 FRBs have been detected, but now we have news that the Canadian Hydrogen Intensity Mapping Experiment (CHIME) has pulled in a total of 535 new fast radio bursts in its first year of operation between 2018 and 2019. The catalog growing from this work was presented this week at the annual meeting of the American Astronomical Society. "Before CHIME, there were less than 100 total discovered FRBs; now, after one year of observation, we've discovered hundreds more," says CHIME member Kaitlyn Shin, a graduate student in MIT's Department of Physics. "With all these sources, we can really start getting a picture of what FRBs look like as a whole, what astrophysics might be driving these events, and how they can be used to study the universe going forward." Image: The large radio telescope CHIME, pictured here, has detected more than 500...
TOI 1231b: A Useful Temperate Sub-Neptune
The beauty of nearby M-dwarf stars for exoplanet research is the depth of transits. If we are fortunate enough to find a planet crossing the face of the star as seen from our observatory, the star's small size means a larger portion of its light will be attenuated. As you would imagine, this makes planets easier to spot, but the other significant advantage is that we have greater capability at analyzing the planet's atmosphere. TOI-1231b certainly fits the bill, although it's a bit of an anomaly in the TESS universe. The space observatory operates with a built in observational bias because the Science Processing Operations Center (SPOC) pipeline and the Quick Look Pipeline (QLP) that comb through TESS data on a 2-minute and 30 minute cadence respectively have to show two transits for the planet's period to be determined. Factor in that most of the TESS sky coverage is observed for 28 days and you wind up in the majority of cases with detections of planets with orbital periods of less...
When Will We See an Ice Giant Orbiter?
With NASA announcing that its Discovery program would fund both Davinci and Veritas, two missions to Venus, it's worth pausing to consider where we are in the realm of Solar System exploration. This is not to knock the Venus decisions; this is a target that has been neglected compared to, obviously, Mars, and we've kept it on the back burner while exploring Jupiter, Saturn and, with a fast flyby, Pluto/Charon. With budgets always tight, the axe must fall, and fall it has on the promising Trident. Discovery-class involves small-scale missions that cost less than $500 million to develop. The Trident mission would have delivered imagery from Triton that upgraded the 1989 images from Voyager 2, useful indeed given the moon's active surface, and we might have learned about the presence of a subsurface ocean. I should also mention that we lost IVO when the four candidate missions were pared down to two. IVO (Io Volcano Observer) had a strong case of its own, with close flybys of the...
Juno: Close Pass by Ganymede
The Juno spacecraft swings by Ganymede today, coming within 1,038 kilometers of the largest moon of Jupiter. We have to look back over twenty years to see such a close approach to Ganymede, that one conducted by the Galileo probe in 2000. Juno seems to be one of those gifts that keeps on giving, rewarding us now with new data on Ganymede's composition, tenuous ionosphere, magnetosphere and icy surface, likely a shell over an underlying ocean. Scott Bolton (SwRI) is Juno's principal investigator: "Juno carries a suite of sensitive instruments capable of seeing Ganymede in ways never before possible. By flying so close, we will bring the exploration of Ganymede into the 21st century, both complementing future missions with our unique sensors and helping prepare for the next generation of missions to the Jovian system - NASA's Europa Clipper and ESA's [European Space Agency's] JUpiter ICy moons Explorer [JUICE] mission." Image: Left to right: The mosaic and geologic maps of Jupiter's...
The Oort Cloud and Close Stellar Encounters
If we assume that the Oort Cloud, that enveloping shroud of comets that surrounds our Solar System and extends to 100,000 AU or beyond, is a common feature of stellar systems, then it’s conceivable that objects are interchanged between the Sun and Alpha Centauri where the two clouds approach each other. That makes for the ‘slow boat to Centauri’ concept I’ve written about before, where travel between the stars essentially mines resources along the way in migrations lasting thousands of years. The resulting society would not be planet-oriented. When the Dutch astronomer Jan Hendrik Oort deduced the cloud’s existence, he theorized that there was an inner, disk-shaped component as well as an outer, spherical cloud, as shown in the image below. The outer cloud is only loosely bound to the Sun, making the interchange of cometary materials between stars a likely event over the aeons, while gravitational nudges from passing stars can dislodge comets in the other direction as well, causing...
Analyzing White Dwarf Debris Disks
You can blame H. G. Wells' The Time Machine for my interest in the Earth's far future. That swollen red Sun at the end of the novel created vivid 'end of the world' scenarios for me as a boy, and later I would learn that outer planets or moons around a G-class star might turn habitable once it became a red giant. But it would only be in the last few years that I learned how robust the investigations into white dwarf systems -- the fate of a red giant -- have become, and now we're finding out not only that such stars can retain planets, but can conceivably create new ones through an emerging disk packed with the pulverized dust of remnant materials like asteroids. Image: This artist's concept shows a white dwarf debris disk. Credit: NASA/JPL-Caltech. Jordan Steckloff (Planetary Science Institute, Tucson) has just published a short paper on the matter, looking at how white dwarf debris disks emerge. The disks seem to form only after ten to twenty million years following the end of the...
Exotic Ice on Europa?
The first thing to say about the image below is that it fills me with anticipation for the imagery that Europa Clipper will acquire when it travels to the Jovian moon later this decade (arrival in 2030, according to current planning). This is a Galileo image taken in 1996, the subject of intense study, as have been all the Europa images, ever since. How much interaction does Europa's subsurface ocean have with the icy crust? We can't say for sure how much is going on now, but images like these show how much fracturing and re-formation there has been in the past. In any event, fresh data from Europa Clipper should give us entirely new insights. Image: Enhanced image of a small region of the thin, disrupted ice crust on Jupiter's moon Europa taken in 1996 by NASA's Galileo spacecraft. Image Source: NASA. Beyond that, though, there is another story with Europa implications that is being investigated by scientists at Oak Ridge National Laboratory, an installation under the aegis of the...