How planets grow in double-star systems has always held a particular fascination for me. The reason is probably obvious: In my younger days, when no exoplanets had been discovered, the question of what kind of planetary systems were possible around multiple stars was wide open. And there was Alpha Centauri in our southern skies, taunting us by its very presence. Could a life-laden planet be right next door?

What Kedron Silsbee and Roman Rafikov have been working on extends well beyond Alpha Centauri, usefully enough, and helps us look into how binaries like Centauri A and B form planets. Says Rafikov (University of Cambridge), “A system like this would be the equivalent of a second Sun where Uranus is, which would have made our own solar system look very different.” How true. In fact, imagining how different our system would work if we had a star among the outer planets raises wonderful questions.

Could we have a habitable world around each star in such a binary? And if so, wouldn’t the incentive to develop spaceflight take hold early among the denizens of such a world? We used to imagine a habitable Mars, by stretching Percival Lowell’s observations of what Giovanni Schiaparelli described as ‘canali’ (‘channels’) to their limit. How much more would a green and blue world with clouds and oceans beckon?

Image: Artist’s impression of a hypothetical planet around Alpha Centauri B. Credit: ESO/L. Calçada/N. Risinger.

But back to Rafikov, whose paper with Silsbee (Max Planck Institute for Extraterrestrial Physics) has been accepted at Astronomy & Astrophysics. The two researchers have refined binary star planet formation through a series of simulations, with Alpha Centauri in mind as well as the tight binary Gamma Cephei, a K-class star with red dwarf companion and a planet orbiting the primary. Silsbee explains the problem they were trying to solve: How does the companion star affect the existing protoplanetary disk of the other? He adds:

“In a system with a single star the particles in the disc are moving at low velocities, so they easily stick together when they collide, allowing them to grow. But because of the gravitational ‘eggbeater’ effect of the companion star in a binary system, the solid particles there collide with each other at much higher velocity. So, when they collide, they destroy each other.”

Gamma Cephei is a case in point: The system yields planetesimal collision velocities of several kilometers per second at the 2 AU distance of the system’s known planet, which should be enough, the authors note, to destroy even planetesimals as large as hundreds of kilometers in size. This problem appears in the literature as the fragmentation barrier, and it looms large, even when taking into account the aerodynamic drag induced by the gases of the protoplanetary disk. We can expect high collision velocities here.

And there go the planetesimals, which should, according to core accretion theory, grow out of dust particles as they gradually begin to bulk up into larger solid bodies. Given that we now know about numerous exoplanets in binary systems, how did they emerge? Were they all ‘rogue’ planets that ambled into the gravitational influence of the binary pair? And if that idea seems unlikely, how then do we explain their growth?

Rafikov and Silsbee show through their simulations that given realistic processes and the mathematics to describe them, such worlds will emerge. Incorporated in the resulting model is a new look at the question of gas drag and its effects. They find that drag in the disk — Silsbee likens it to a kind of wind — can indeed alter planetesimal dynamics and can offset the gravitational influence of the nearby stellar companion.

For although a number of earlier studies included gas drag in their models, their calculations ignored the effect of disk gravity, which according to the authors changes the dynamics of the population of planetesimals. They are able to identify quiet zones in the disk in which planetesimals can grow into planets. And they believe their model fully accounts for planetesimal dynamics throughout the young system. Among their conclusions:

The gravitational effect of the protoplanetary disk plays the key role in lowering the minimum initial planetesimal size necessary for sustained growth by a factor of four. This reduction can be achieved in protoplanetary disks apsidally aligned with the binary, in which a dynamically quiet zone appears within the disk provided that the mass-weighted mean disk eccentricity ≲ 0.05…

And this:

For most disk parameters considered in this paper, planet formation in binaries such as γ Cephei can successfully occur provided that the initial planetesimal size is ≲ 10 km; however, for favorable disk parameters, this minimum initial size can go down to ≲ 1 km.

We should expect, then, that planets could form in systems like Alpha Centauri, where the hunt for worlds around the Centauri A and B pair continues. This can occur if the planetesimals can reach this minimum size, and it assumes a protoplanetary disk that is close to circular. Given those parameters, planetesimal relative velocities are slow enough in certain parts of the disk to allow planet formation to take place.

How to get planetesimals to the minimum size needed? The streaming instability model of planetesimal formation may be operational here, in which the planetesimals grow rapidly. In this model, drag in the disk slows solid particles and leads to their swift agglomeration into clumps that can gravitationally collapse. Streaming instability is a rapid alternative to the alternate theory of planetesimals growing steadily through coagulation alone. In fact, the paper cites a timescale of tens of local orbital periods, rapidly producing a population of ‘seed’ planetesimals.

Whether or not streaming instability does offer a pathway to planets is a question that is still unresolved, though the theory has implications for planet formation around single stars as well. It certainly eases formation in the binaries considered here.

The paper is Silsbee & Rafikov, “Planet Formation in Stellar Binaries: Global Simulations of Planetesimal Growth,” accepted at Astronomy and Astrophysics (abstract / preprint).

tzf_img_post