Our recent focus on life detection on nearby worlds concludes with a follow-up to Alex Tolley’s June essay on Venus Life Finder. What would the sequence of missions look like that resulted in an unambiguous detection of life in the clouds of Venus? To answer that question, Alex takes the missions in reverse order, starting with a final, successful detection, and working back to show what the precursor mission to each step would have needed to accomplish to justify continuing the effort. If the privately funded VLF succeeds, it will be in the unusual position of making an astrobiological breakthrough before the large space organizations could achieve it, but there are a lot of steps along the way that we have to get right.

by Alex Tolley

In my previous essay, Venus Life Finder: Scooping Big Science, I introduced the near-term, privately financed plan to send a series of dedicated life-finding probes to Venus’ clouds. The first was a tiny atmosphere entry vehicle with a dedicated instrument, the Autofluorescing Nephelometer (AFN). The follow-up probes would culminate in a sample return to Earth, all this before the big NASA and ESA probes had even reached Venus at the end of this decade to investigate planetary conditions.

When the discussion turns to missions on or around planets or moons that may be home to life, the focus is on whether these probes could be loaded with life-finding instruments to front-load life detection science. The VLF missions are perhaps the first, to make detecting life the primary science goal since the Viking Mars missions in the mid-1970s, with the possible exception of ESA’s Beagle 2 (Beagle 2 lander’s objectives included landing site geology, mineralogy, geochemistry, atmosphere, meteorology, climate; and search for biosignatures [8]).

The approach I am going to use here is to start with what an Earth laboratory might do to investigate samples with suspected novel life. I will then reverse the thinking for each mission stage until the decision to launch a Venusian atmosphere entry AFN becomes the obvious, logical choice.

So let us start with the what science and technology would likely employ on Earth, assuming that we have samples from the VLF missions previously undertaken that indicate that the conditions for life are not prohibitive, and earlier analyses that suggest that the collected particles are not just inanimate but appear to be, or contain life. As we do not know if this life is truly from a de novo abiogenesis or common to terrestrial life and thus perhaps from Earth, there are a number of basic tests that would be employed to determine if the VLF samples contain life.

The key analyses would include:

1) Are there complex organic molecules with structural regularities rather than randomness? For example, terrestrial cell membranes are composed of lipid chains with a certain length of the carbon chain (phospho- and glycolipids peak at 16- and 18-length chains). Are there high abundances of certain molecules that might form the basis of an information storage molecule, e.g. the 4 bases used in DNA – adenine, thymine, guanine, cytosine, or an abundance subset of the many possible amino acids?

2) Are the cell-like particles compartmentalized? Are there cell membranes? Do the cells contain other compartments that manage key biological functions [5]?

3) Do the molecules show homochirality, as we see on Earth? If not, and the molecules are racemic as we see with amino acids in meteorites, then this indicates a non-biological formation. Terrestrial proteins are based on levorotatory amino acids (L-amino acids), whilst sugars are dextrorotatory (D-sugars).

4) Do the samples generate or consume gases that are associated with life? This can be deceptive as we learned with the ambiguous Viking experiment to detect gas emissions from cultured Martian regolith. Lab experiments can resolve such issues.

5) Do the samples have different Isotope ratios than the planetary material? On Earth, biology tends to alter the ratios of carbon and oxygen isotopes that are used as proxies in analyses of samples for paleo life. For example, photosynthesis reduces the C13/C12 ratio and therefore can be used to infer whether carbon compounds are biogenic.

Note that the goals do not initially include using optical microscopes, or DNA sequencers. Terrestrial life is increasingly surveyed analyzing samples for DNA sequences. DNA reading instruments will only work if the same nucleobases are used by Venusian life. If they are, then there is the issue of whether they come from a common origin to terrestrial life. For bacteria-sized particles, electron microscopes are more appropriate.

The types of instruments used include mass spectrometers, liquid and gas chromatographs, optical spectrometers of various wavelengths, nanotomographs (nano-sized CT scans), atomic force microscopes, etc. These instruments tend to be rather large and heavy, although specially designed ones are being flown on the big missions, such as the Mars Perseverance rover. Table 1 below details these biosignature analyses to be done on the returned samples.

Table 1 (click to enlarge). Laboratory biosignature analyses for the returned samples, the instruments, and the specific outputs.

For the goal of detecting biosignature gases and their changes, table 2 shows the prior information collected from probes and telescopes that might indicate extant life on Venus.

Table 2 (click to enlarge). Prior data of potential biosignature gases in the Venusian atmosphere.

Given that these are the types of experiments on samples returned to Earth, how do we collect those samples for return? Unlike Mars, life on Venus is expected to be in the clouds, in a temperate habitable zone (HZ) layer. The problem is not dissimilar to collecting samples in the deep ocean. A container must be exposed to the environment and then closed and sealed. Apart from pressure, the ocean is a benign environment.

Imagine the difficulties of collecting a sample near the bottom of a deep, highly acidic lake. How would that be done given that it is not possible to take a boat out and lower an acidic resistant sample bottle? The VLF team has not decided how best to do this, but the sampling is designed to take place from a balloon floating in the atmosphere for the sample return mission.

Possible sampling methods include:

  • Use of aerogels
  • Filters
  • Electrostatic sticky tape
  • Funnels, jars, and bottles
  • Fog Harp droplet collector
  • Gas sampling bags

In order to preserve the sample from contamination and to ensure planetary protection from the returned samples, containment must be carefully designed to cover contingencies that might expose the sample to Earth’s biosphere.

Note that this Venus Return mission is no longer a small project. The total payload to reach LEO, that includes the transit vehicle, balloon and instrument gondola, plus Venus ascent vehicle, and transit vehicle to Earth, is 38,000 kg, far more massive than the Mars Perseverance Mission, double the launch capability of the Atlas V and Ariane V launchers, and requiring the Falcon Heavy. The number of components indicates a very complex and difficult mission, probably requiring the capabilities of a national space organization. This is definitely no longer a small, privately funded, mission.

But let’s backtrack again. The samples were deemed worth the cost of returning to Earth because prior missions have supported the case that life may be present in the atmosphere. What experiments would best be done to make that assessment, given a prior mission that indicated this ambitious, complex, and expensive effort was worth attempting?

The science goals for this intermediate Habitability Mission are:

1) Measure the physical conditions in the cloud layer to ensure they are not outside of a possible extremophile range. The most important metric is perhaps temperature, as no terrestrial thermophile can survive above 122 °C, nor metabolize in solids. A lower bound might be that water freezes at 0 °C, although salt water will lower that freezing point, so halophiles could live in salty water at below 0 °C. Is there water vapor in the clouds that indicates that the particles are not pure sulfuric acid? Allied with that, are the particles less acidic than pure H2SO4? Are there non-volatile elements, such as phosphorus and metals, that are used by terrestrial biology to harvest and transfer energy for metabolism?

2) Can the organic materials previously detected be identified to indicate biologic rather than abiologic chemistry? Are there any hints at compound regularity that will inform the sample return mission? Can we detect gas changes that indicate metabolism is happening, and are the gases in disequilibrium? Of particular interest may be the detection of phosphine (PH3) emissions, an unambiguous terrestrial biosignature, detected in the Venusian clouds by terrestrial ground-based telescopes in 2020.

3) Are the non-spherical particles detected in a prior mission solid or liquid, and are they homogeneous in composition (non-biologic) or not (possible life).

To be able to do these experiments, the mission will use balloons that can float in the Venusian clouds. They may need to be able to adjust their altitude to find the best layers (but this adds complexity, risk, and cost) and travel spatially, especially if there is a desire to sample the patchy cloud layers that are strongly UV absorbing and have been likened to algal blooms on Earth.

A balloon mission is quite complex and carries a number of instruments, so that cost and complexity is now substantial. A simpler, low-cost, prior mission is needed that will capture key data. What is the simplest, lowest mass mission possible that will inform the team that this balloon mission should definitely go ahead if the results are positive? What science goals and instrument[s] could best provide the data to inform this decision?

This earlier mission is designed around two sources of information that it can leverage. First, there are the many Venus entry probe missions from the early 1960s to the mid 1980s. The most intriguing information includes the observation that there were particles in the clouds that were not spherical as would be expected by physics, and this non-spherical nature might indicate cellular life, such as bacilli (rod-shaped bacteria).

Shape however, is insufficient, as life must be able to interact with the environment to feed, grow, and reproduce. On Earth, these functions require a range of organic molecules – proteins, DNA, RNA, lipids and sugars. This implies that organic compounds must be present in these non-spherical particles; otherwise the shape may be due to physical processes, including agglomeration and/or merging of spherical particles.

The VLF team is also testing some of the assumptions and technology in the lab, confirming for example that autofluorescing of carbon materials works in concentrated sulfuric acid. Their lab experiments show that linear carbon molecules like formaldehyde and methanol in concentrated H2SO4 result in both UV absorption and fluorescence over time, implying that the structures are altered, as is found in industrial processes. From the report:

If there is organic carbon in the Venus atmosphere, it will react with concentrated sulfuric acid in the cloud droplets, resulting in colored, strongly UV absorbing, and fluorescent products that can be detected (…). We have exposed several samples containing various organic molecules (e.g., formaldehyde) to 120 °C, 90% sulfuric acid for different lengths of time. As a result of the exposure to concentrated sulfuric acid all of the tested organic compounds produced visible coloration, increased absorbance (mainly in the UV range of the spectrum), and resulted in fluorescence (…)

It should also be noted that Misra has shown that remote autofluorescing can detect carbon compounds and distinguish between organic material (leaves, microbes on rocks, and fossils) and fluorescing minerals [6,7].

Table 3 (click to enlarge). The science goals for the balloon mission, showing that the AFN is the best single instrument to both detect and confirm the non-spherical particles found in the prior Venus probes, and the presence of organic compounds in the particles. It can also determine whether the particles are liquid or solid, and estimate the pH of the particles.

Of the possible choices of instruments, the Autofluorescing Nephelometer (AFN) best meets the requirements of being able to measure both particle shape and the presence of organic compounds. This can be seen in table 3 above for the science goals of the balloon mission. The instrument is described in the prior post and in more detail in the VLF Report [1]. Ideally, both conditions should be met with positive results, although even both together are suggestive but not unambiguous.

Organic compounds can form in concentrated H2SO4, and cocci are essentially spherical bacteria. Nevertheless, a positive result for one or both justifies the funding of the follow up mission. Conversely, a negative result for both, especially the absence of detectable organic compounds would put a nail in the coffin of the idea that there is life in the Venusian clouds (a classic falsification experiment) – at least for that 4-5 minute data acquisition mission as the probe falls through the HZ layers of clouds where these non-spherical particles have previously been detected.

It could certainly be argued that life is patchy, and just like failing to catch a fish does not mean there are no fish to be caught, it is possible that the probe fell though a [near] lifeless patch and that other attempts should be made, for example the balloon mission that will take measurements over a wider range of space and time.

The first VLF probe mission begs the question of why we should even consider Venus as an abode for life. The prior missions have shown that the surface is a very hot, dry, and acidic environment which is inimical to life as we know it. The only suggestions for the presence of life are the aforementioned patchy UV absorbing regions implying organic compounds in the clouds, and the presence of the biosignature gas PH3.

For life to be on Venus, either the conditions must once have been clement to allow abiogenesis, or life must have been seeded by panspermia to allow it ultimately to evolve to survive in the cloud refugia when the oceans were lost during the runaway greenhouse era. Is there any evidence that Venus was once our sister world with conditions like Earth, but warmer, before the runaway greenhouse conditions transformed the planet?

The scholarly literature is divided, from the optimistic view of Grinspoon [2] and others that Venus had an early ocean that lasted for long enough (e.g. 1 Gy), to support life [3], to the pessimistic view of Turbet [4] that modeling suggests Venus never had an ocean (and that Earth was only able to condense one during the faint young sun period.

It is to try to answer these questions that the science goals of NASA’s and ESA’s DAVINCI+, VERITAS, and EnVision probes are designed to meet.

The VLF team, however, have supported their plan with the optimistic view that early Venus was clement and that life could have taken hold, and therefore a series of dedicated, life-finding missions will best answer the question of whether there is life on Venus, rather than establishing that a paleo climate on Venus was indeed present and lasted long enough to allow life to emerge, or long enough for it to have been transferred from Earth by the time we are sure life on Earth was present.

If the first VLF mission returns positive results, then it seems likely that the following missions, however designed and by whom executed, will push forward the science goals toward more life detection. Negative results could well derail subsequent life detection goals. The time frame will overlap with the Mars sample return mission that will collect the Perseverance rover samples for analyses back on Earth. It may well also overlap with the early results of biosignature detection on exoplanets. Whatever the outcome, the end of this decade will be an exciting time and will pose fundamental questions about our place in the galaxy.

References

1. Seager S, et al Venus Life Finder Study (2021) Web accessed 02/18/2022 https://venuscloudlife.com/venus-life-finder-mission-study/

2. Grinspoon, David & Bullock, Mark. (2007). Searching for Evidence of Past Oceans on Venus, American Astronomical Society, DPS meeting #39, id.61.09; Bulletin of the American Astronomical Society, Vol. 39, p.540

3. Way, M. J.,et all (2016), Was Venus the first habitable world of our solar system?, Geophys. Res. Lett., 43, 8376-8383, doi:10.1002/2016GL069790.

4. Turbet, M., Bolmont, E., Chaverot, G. et al. Day-night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276-280 (2021). https://doi.org/10.1038/s41586-021-03873-w

5. Cornejo E, Abreu N, Komeili A. Compartmentalization and organelle formation in bacteria. Curr Opin Cell Biol. 2014 Feb;26:132-8. doi: 10.1016/j.ceb.2013.12.007. Epub 2014 Jan 16. PMID: 24440431; PMCID: PMC4318566.

6. Misra, A.K., Rowley, S.J., Zhou, J. et al. Biofinder detects biological remains in Green River fish fossils from Eocene epoch at video speed. Sci Rep 12, 10164 (2022). https://doi.org/10.1038/s41598-022-14410-8

7. Misra, A. et al (2021). Compact Color Biofinder (CoCoBi): Fast, Standoff, Sensitive Detection of Biomolecules and Polyaromatic Hydrocarbons for the Detection of Life. Applied Spectroscopy. 75. 000370282110339. DOI:10.1177/00037028211033911.

8. Beagle 2. https://en.wikipedia.org/wiki/Beagle_2 Accessed July 2, 2022

tzf_img_post