Small M-dwarf stars, the most common type of star in the galaxy, are likely to be the primary target for our early investigations of habitable planets. The small size of these stars and the significant transit depth this allows when an Earth-mass planet crosses their surface as seen from Earth mean that atmospheric analysis by ground- and space-based telescopes should be feasible via transmission spectroscopy. Recent studies have shown that the James Webb Space Telescope has the precision to at least partially characterize the atmospheres of Earth-class planets around some M-dwarfs.

Soon-to-be commissioned ground-based extremely large telescopes will likewise play a role as we examine nearby transiting systems. But M-dwarfs make challenging homes for life, if indeed it can exist there. In addition to flare activity, we also have to reckon with the presence of water. Too much of it could suppress weathering in the geochemical carbon cycle, but too little does not allow for the development of a temperate climate. Thus new work on water content in such systems is welcome.

For purposes of reference, Earth’s seawater accounts for 0.023% of the planet’s total mass. According to Tadahiro Kimura, a doctoral student at the University of Tokyo, and Masahiro Ikoma (National Astronomical Observatory of Japan), a number of models suggest that terrestrial planets around M-dwarfs would have either too much water or no water at all. Are habitable planets around such stars, then, a celestial rarity?

In a new paper in Nature Astronomy, the authors argue that there is a mechanism beyond the infall of icy planetesimals that can produce water as a young planet accumulates its atmosphere. It involves interactions between the hydrogen-rich atmosphere, drawn from the protoplanetary disk, and the magma ocean that would be present from impacts during the early days of planet formation. Water is accumulated through the chemical reaction between atmospheric hydrogen and the oxides found in the surface magma – a magma ‘ocean’ – of the young planet. From the paper:

…water can be secondarily produced in a primordial atmosphere of nebular origin through reaction of atmospheric hydrogen with oxidising minerals from the magma ocean, which is formed because of the atmospheric blanketing effect[8], thereby enriching the primordial atmosphere with water. By assuming effective water production, we recently showed that nearly-Earthmass planets can acquire sufficient amounts of water for their atmospheric vapour to survive in harsh UV environments around pre-main-sequence M stars [9]. The results suggest that including this water production process significantly affects the predicted water amount distribution of exoplanets in the habitable zone around M dwarfs.

Image: Probability distribution of seawater mass fractions for planets of Earth-like mass (0.3-3 times Earth mass) located in the habitable zone around M-type stars (0.3 solar masses). Green is the result of calculations following the conventional model and considering only the acquisition of water-bearing rocks. Orange is the result when the model of the present study is used and the effect of water production in the primordial atmosphere is taken into account. The dotted line is the present-day seawater amount on the Earth. Credit: National Astronomical Observatory of Japan.

In this scenario, the amount of water present depends on how the planet forms. The authors have created a planetary population synthesis model that tracks the mass and orbital evolution of planets in formation, including among other things the structure of the protoplanetary disk, potential orbital migration, instabilities in multi-planet systems and the effects of water production in the primordial atmosphere. The model, which refines that presented in an earlier paper by the same researchers, allows the calculation of the amount of water that should be produced through the atmosphere/magma interaction.

The range of water outcomes is wide, but if we narrow it to planets with seawater mass fractions similar to Earth, most of this water is found to come through atmosphere/magma interaction rather than by incoming impacts by comets and other water-bearing objects. And it turns out that a few percent of planets with a radius between 0.7 and 1.3 times that of Earth produce the right amount of water to sustain temperate climates. Let me quote the paper on this – note that in the passage below, HZ-NEMP refers to nearly-Earth-mass planets in the habitable zone:

The HZ-NEMPs of 0.7–1.3 R?… have lost their hydrogen atmospheres completely, ending up with rocky planets covered with oceans. It turns out that those planets are diverse in water content and do include planets with Earth-like water content. Several climate studies argue the amounts of seawater appropriate for temperate climates, considering the effects of seafloor weathering, high-pressure ice, water cycling and heterogeneous surface water distribution… According to those studies, the appropriate seawater amount ranges from ?0.1 to 100 times that of the Earth.

Clearly, target selection for exoplanet habitability would benefit from being able to exclude planets that are unlikely to be habitable, which according to this paper would include habitable zone worlds with radii > 1.3R? that have deep oceans with high-pressure ice, and planets with ocean mass fractions greater than 100 times that of Earth. The authors believe that we should be able to identify such worlds if planetary mass and radius can be measured within ? 20% and 5% accuracy respectively. Having eliminated these, we turn to planets in the 0.7 to 1.3R? range. The authors refer to them as ‘water-poor,’ in comparison to their larger cousins, but they still can have seawater fractions similar to that of Earth:

…the HZ-NEMPs with appropriate amounts of seawater for habitability are estimated to account for ?5% of the “water-poor rocky planets” orbiting 0.3M M dwarfs. This frequency becomes higher for larger stellar mass, and around 0.5M stars, for example, more than 10% of the water-poor rocky planets are expected to have the appropriate amounts of seawater.

So 5% to 10% of the M-dwarf exoplanets in the appropriate size range (< 1.3R?) have the fraction of water needed for habitability. The paper makes this prediction: Survey missions like TESS and the upcoming PLATO should detect approximately 100 Earth-sized planets in the habitable zone around M-dwarfs. 5 to 10 of these, according to this model, are likely to be planets with oceans and temperate climates, a sharp contrast to earlier studies indicating such worlds should not exist.

The paper is Kimura & Ikoma, “Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs,” Nature Astronomy 29 September 2022 (abstract / preprint). The authors’ earlier paper on water enrichment is Kimura & Ikoma, “Formation of aqua planets with water of nebular origin: effects of water enrichment on the structure and mass of captured atmospheres of terrestrial planets,” Monthly Notices of the Royal Astronomical Society 496, 3755 (2020) (abstract).

tzf_img_post