Small M-dwarf stars, the most common type of star in the galaxy, are likely to be the primary target for our early investigations of habitable planets. The small size of these stars and the significant transit depth this allows when an Earth-mass planet crosses their surface as seen from Earth mean that atmospheric analysis by ground- and space-based telescopes should be feasible via transmission spectroscopy. Recent studies have shown that the James Webb Space Telescope has the precision to at least partially characterize the atmospheres of Earth-class planets around some M-dwarfs. Soon-to-be commissioned ground-based extremely large telescopes will likewise play a role as we examine nearby transiting systems. But M-dwarfs make challenging homes for life, if indeed it can exist there. In addition to flare activity, we also have to reckon with the presence of water. Too much of it could suppress weathering in the geochemical carbon cycle, but too little does not allow for the...
Great Winds from the Sky
Do we need to justify pushing our limits? Doing so is at the very heart of the urge to explore, which is embedded in our species. Recently, while doing some research on Amelia Earhart, I ran across a post on Maria Popova's extraordinary site The Marginalian, one that examines the realm of action within the context of the human spirit. Back in 2016, Popova was looking at Walter Lippmann (1889-1974), the famed journalist and commentator, who not long after Earhart's fatal flight into the Pacific discussed the extent of her achievement and the reasons she had flown. Here's a passage from Lippmann's New York Herald Tribune column, written on July 8, 1937, just six days after the aviator and her navigator, Fred Noonan, disappeared somewhere near Howland Island between Hawaii and Australia. Lippmann asks whether such ventures must be justified by a utilitarian purpose and concludes that what is at stake here transcends simple utility and speaks to the deepest motivations of our...
Juno: First Image from Europa
Juno's close pass of Europa on September 29 (1036 UTC) took it within 352 kilometers of the icy moon, marking the third close pass in history below 500 kilometers. The encounter saw the spacecraft come within a single kilometer of Galileo's 351 kilometers from the surface back in January of 2000, and it provided the opportunity for Juno to use its JunoCam to home in on a region north of Europa's equator. Note the high relief of terrain along the terminator, with its ridges and troughs starkly evident. Image: The complex, ice-covered surface of Jupiter's moon Europa was captured by NASA's Juno spacecraft during a flyby on Sept. 29, 2022. At closest approach, the spacecraft came within a distance of about 352 kilometers. Credit: NASA/JPL-Caltech/SWRI/MSSS. This first image from JunoCam captures features at the region called Annwn Regio, and was collected in the two-hour window available to Juno as it moved past Europa at 23.6 kilometers per second. What we hope to gain from analysis of...
Colors of a Habitable Exoplanet
When it comes to planetary habitability, it is all too easy to let our assumptions slide past without review. It's a danger to be avoided if we want to understand what may distinguish various types of habitable worlds. That's the implication of a presentation at the recent Europlanet Science Congress (EPSC), which finished its work on September 23 at the Palacio de Congresos de Granada (Spain). Tilman Spohn (International Space Science Institute) and Dennis Höning (Potsdam Institute for Climate Impact Research) have been investigating the ratio of land to ocean and the evolution of biospheres. The assumptions the duo are examining revolve around the kind of habitable world our Earth represents. Our planet draws on solar energy through continents balanced against large oceans that produce abundant rainfall. Would a given exoplanet have similar geological properties? According to the scientists, it is a balance between the emergence of continents and the volcanism and continental...
DART’s Palpable Hit
Although I had Europa on my mind yesterday, I hadn't thought to find a connection between the icy Jovian moon and the DART mission. Yet it turns out the Double Asteroid Redirection Test imaged Jupiter and Europa in July and August as the spacecraft moved toward yesterday's encounter with the binary asteroid Didymos. Controllers used the spacecraft's DRACO imager (Didymos Reconnaissance and Asteroid Camera for Optical navigation) to examine the visual separation between moon and planet, homing in on variations in the pixel count and intensity as the targets moved across the detector. All this in anticipation of the spacing that would soon be detected between the larger asteroid Didymos and its tiny companion Dimorphos. Says Peter Ericksen, SMART Nav software engineer at APL: "Every time we do one of these tests, we tweak the displays, make them a little bit better and a little bit more responsive to what we will actually be looking for during the real terminal event." Image: This is a...
Juno Closes on Europa
As the Europlanet Science Congress (EPSC) has just wrapped up in Spain’s Palacio de Congresos de Granada, I’m reminded how little time I’ve had recently to keep up with such gatherings. I do hope to have some entries on EPSC-announced findings in the near future. Today I simply note the news of an unexpected ‘heat wave’ (700?) extending 130,000 kilometers just below Jupiter’s northern aurora, one traveling at high speed toward the equator, as announced by James O’Donoghue at the EPSC. Says JAXA’s O’Donoghue: “While the auroras continuously deliver heat to the rest of the planet, these heat wave ‘events’ represent an additional, significant energy source. These findings add to our knowledge of Jupiter’s upper-atmospheric weather and climate, and are a great help in trying to solve the ‘energy crisis’ problem that plagues research into the giant planets.” I mention this work in particular because of my interest in the EPSC results but also because Jupiter has been on my mind thanks to...
The Decision Rests with You! The Day the Earth Stood Still, Seven Decades Later
Did you know that there was a plan for a sequel to The Day The Earth Stood Still, the fine Robert Wise movie (1951) about Earth's first contact with another civilization? I mention this never-filmed project because the treatment for the screenplay was developed by none other than Ray Bradbury. Nobody digs into science fiction movies like Larry Klaes, and this is just the kind of detail he unearths in the deep dives into science fiction films he regularly produces for Centauri Dreams. The fact that The Day the Earth Stood Still is a product of its time makes it all the more fascinating, for it tells us much about our attitudes toward the unknown as well as the uncertainties of our own human nature and the threat posed by technologies that could destroy us. As always, Larry pulls references out of the air that most of us would never have found and in the process puts The Day the Earth Stood Still into refreshing and clarifying context. by Larry Klaes There once was a highly evolved...
What Happens Next
I'm going to need to take some time off, a decision prompted by responsibilities outside the interstellar community that have grown to the point where I lack the time to maintain a consistent schedule on the site. I'll keep moderating comments as usual, and I have some first-rate essays coming up from other authors, but my own writing is going to have to be sporadic for the time being. Long-term, I plan to keep Centauri Dreams active for a long time, so bear with me. As soon as I can do it, I will get back to a more consistent schedule. For now, though, expect a slower pace of new posts from me.
Arrokoth: The Unbearable Lightness of Being
We're in that earliest phase of interstellar exploration that is all about nudging outward from our system into the local interstellar medium. That has already involved the Voyagers, but my plan is to keep checking in on both the Interstellar Probe concept at the Johns Hopkins Applied Physics Laboratory and the SGL probe study steadily maturing at the Jet Propulsion Laboratory. These are absorbing ventures as scientists figure out ways to do propulsion, in-flight maintenance (and in the case of SGL, in-flight assembly) and data return on timescales the Voyager team wasn't imagining when those doughty craft were launched in 1977. Nudging outward. Let's check in a bit with New Horizons, because here we have a Kuiper Belt explorer that is fully operational, and with instruments specifically designed for the environment it explores, now some 54 AU from the Sun. It's striking to think that the Juno mission is ten times closer to our star than New Horizons. The Pluto/Charon flyby seems a...
Tuning Up for Europa
The new Jupiter photos from JWST's Near Infrared Camera (NIRCam) are unusual, enough so that I decided to fold one into today's post. It's a pretty good fit because I had already put together most of the material I was going to use about Europa. It would have been an additional plus if Europa showed up in the image below, but even without it, note that we can see moons as small as Adrasta here. Imke de Pater (UC-Berkeley), who led the observations, noted that both tiny satellites and distant galaxies show up in the same image. And here's Thierry Fouchet, a professor at the Paris Observatory, who likewise worked on the observing effort: "This image illustrates the sensitivity and dynamic range of JWST's NIRCam instrument. It reveals the bright waves, swirls and vortices in Jupiter's atmosphere and simultaneously captures the dark ring system, 1 million times fainter than the planet, as well as the moons Amalthea and Adrastea, which are roughly 200 and 20 kilometers across,...
Mapping Out Interstellar Clouds
Although I've written on a number of occasions about the project called Interstellar Probe, the effort to create what we might call a next-generation Voyager equipped to study space beyond the heliosphere, it's always been in terms of looking back toward the Solar System. What is the shape of the heliosphere once we see it from outside, and how does it interact with the local interstellar medium? The Voyagers have given us priceless clues, but they were never designed for this environment and in any case will soon exhaust their energies. Pontus Brandt (JHU/APL), who is project scientist for the Interstellar Probe effort, takes us beyond these heliosphere-centric ideas as he talks to Richard Stone in a fine article about the mission called The Long Shot that ran recently in Science. Because when you launch something moving faster than Solar System escape velocity, you just keep going, and while 1000 AU is often cited as a target for this mission, it's really only a milestone marker...
Laser Communications: A Step at a Time to Deep Space
My last look at laser communications inside the NASA playbook was a year ago, and for a variety of reasons it's time to catch up with the Laser Communications Relay Demonstration (LCRD), which launched in late 2021, and the projects that will follow. LCRD has now been certified for its mission of shaking out laser systems in terms of effectiveness and potential for relay operations. Ideally, we’d like to receive data from other missions and relay to the ground in a seamless optical network. How close are we to such a result? Image: The Laser Communications Relay Demonstration payload. Credit: NASA Goddard Space Flight Center. LCRD is now in geosynchronous orbit almost 36,000 kilometers above the equator, poised for its two year mission, but before we proceed, note this. The voice is that of Rick Butler, project lead for the LCRD experimenters program at NASA GSFC: “We will start receiving some experiment results almost immediately, while others are long-term and will take time for...
Musings on Art, Brown Dwarfs & Galactic Disks
I was getting ready to start writing a story with implications for brown dwarfs and the galaxy’s ‘thick disk’ (as opposed to its ‘thin disk,’ about which more in a moment) when I ran across the artwork below. This is the work of French artist and astronomer Étienne Léopold Trouvelot (1827-1895), whose careful astronomical observations were rendered into illustrations and pastel drawings in the era before astrophotography. I learned from Maria Popova’s The Marginalian that Trouvelot produced 50 scientific papers, but almost 7000 works of art based on what he saw. Thus the study of part of the Milky Way below, evidently created somewhere between 1874 and 1876. Trouvelot’s work caught the attention of the director of the Harvard Observatory, who invited him to join its staff in 1872. The concept of his art was to get across to those without the privilege of seeing these objects through a telescope just how they looked to a trained scientist. He przed the value of human rendering over...
CNEOS 2014-01-08: Sampling the Interstellar Meteor
How unusual that the study of an interstellar object should receive a boost from the United States Space Command, which is responsible for US military operations off-planet. But that’s part of the story of CNEOS 2014-01-08, which is described in its discovery paper as “a meteor of interstellar origin.” The 2019 finding came from Harvard’s Avi Loeb, working with then undergraduate student Amir Siraj. Loeb had been examining a catalog containing data on meteors over the last three decades in terms of the strength of their fireball, prompted by a 2018 fireball off the Kamchatka peninsula. The Kamchatka meteor produced a blast with ten times the energy of the Hiroshima bomb, leading Loeb to put Siraj to work on calculating the past trajectories of the fastest meteors in the CNEOS catalog – CNEOS is NASA’s Center for Near Earth Object Studies. In an email yesterday morning, Loeb explained that numerous factors went into the study. Siraj was able to work with the position and velocity of...
Ross 508 b: What We Can Learn from a Red Dwarf Super-Earth
The discovery of a super-Earth around the M-dwarf Ross 508 gives us an interesting new world close to, if not sometimes within, the inner edge of the star’s habitable zone. This is noteworthy not simply because of the inherent interest of the planet, but because the method used to detect it was Doppler spectroscopy. In other words, radial velocity methods in which we study shifts in the spectrum of the star are here being applied to a late M-dwarf that emits most of its energies in the near-infrared (NIR). I usually think about transits in relation to M-dwarf planets, because our space-based observatories, from CoRoT to Kepler and now TESS, have demonstrated the power of these techniques in finding exoplanets. M-dwarfs are made to order for transits because they’re small enough to offer deep transits – the signature of the planet in the star’s lightcurve is more pronounced than a transit across a larger star. From a radial velocity perspective, planets in an M-dwarf habitable zone...
Interstellar Deceleration: Can We Ride the ‘Bow Shock’?
Interesting things happen at the edge of the Solar System. Or perhaps I should say, at the boundary of the heliosphere, since the Solar System itself conceivably extends (in terms of possible planets) further out than the 100 or so AU that marks the heliosphere's boundary at its closest. The fact that the heliosphere is pliable and reacts among other things to the solar cycle in turns means that the boundary is a moving target. It would be useful if we could get something like JHU/APL's Interstellar Probe mission out well beyond the heliosphere to help us understand this morphology better. But let's think about the heliosphere's boundaries from the standpoint of incoming spacecraft. Because deceleration at the destination system is a huge problem for starship mission planning. A future crew, human or robotic, could deploy a solar sail to slow down, but a magsail seems better, as its effects kick in earlier on the approach. Looking at the image below, however, suggests another...
The Challenge of ‘Twilight Asteroids’
We have the Zwicky Transient Facility at Palomar Observatory to thank for the detection of the strikingly named 'Ayló'chaxnim (2020 AV2). This is a large near-Earth asteroid with a claim to distinction, being the first NEO found to orbit inside the orbit of Venus. I love to explore the naming of things, and now that we have 'Ayló'chaxnim (2020 AV2), we have to name the category, at least provisionally. The chosen name is Vatira, which in turn is a nod to Atira, a class of asteroids that orbit entirely inside Earth's orbit. Thus Vatira refers to an Atira NEO with orbit interior to Venus. As to the 'Ayló'chaxnim, it's a word from indigenous peoples whose ancestral lands took in the mountainous region where the Palomar Observatory is located. I'm told by the good people at Caltech that the word means something like 'Venus Girl.' On June 7, people of Pauma descent gathered for a ceremony at the observatory, having been asked by the team manning the Zwicky Transient...
Getting There Quickly: The Nuclear Option
Adam Crowl has been appearing on Centauri Dreams for almost as long as the site has been in existence, a welcome addition given his polymathic interests and ability to cut to the heart of any issue. His long-term interest in interstellar propulsion has recently been piqued by the Jet Propulsion Laboratory's work on a mission to the Sun's gravitational lens region. JPL is homing in on multiple sailcraft with close solar passes to expedite the cruise time, leading Adam to run through the options to illustrate the issues involved in so dramatic a mission. Today he looks at the pros and cons of nuclear propulsion, asking whether it could be used to shorten the trip dramatically. Beamed sail and laser-powered ion drive possibilities are slated for future posts. With each of these, if we want to get out past 550 AU as quickly as possible, the devil is in the details. To keep up with Adam's work, keep an eye on Crowlspace. by Adam Crowl The Solar Gravitational Lens amplifies signals from...
Solar Gravitational Lens: Sailcraft and In-Flight Assembly
The last time we looked at the Jet Propulsion Laboratory’s ongoing efforts toward designing a mission to the Sun’s gravitational lens region beyond 550 AU, I focused on how such a mission would construct the image of a distant exoplanet. Gravitational lensing takes advantage of the Sun’s mass, which as Einstein told us distorts spacetime. A spacecraft placed on the other side of the Sun from the target exoplanetary system would take advantage of this, constructing a high resolution image of unprecedented detail. It’s hard to think of anything short of a true interstellar mission that could produce more data about a nearby exoplanet. In that earlier post, I focused on one part of the JPL work, as the team under the direction of Slava Turyshev had produced a paper updating the modeling of the solar corona. The new numerical simulations led to a powerful result. Remember that the corona is an issue because the light we are studying is being bent around the Sun, and we are in danger of...
Getting Down to Business with JWST
So let’s get to work with the James Webb Space Telescope. Those dazzling first images received a gratifying degree of media attention, and even my most space-agnostic neighbors were asking me about what exactly they were looking at. For those of us who track exoplanet research, it’s gratifying to see how quickly JWST has begun to yield results on planets around other stars. Thus WASP-96 b, 1150 light years out in the southern constellation Phoenix, a lightweight puffball planet scorched by its star. Maybe 'lightweight' isn’t the best word. Jupiter is roughly 320 Earth masses, and WASP-96b weighs in at less than half that, but its tight orbit (0.04 AU, or almost ten times closer to its Sun-like star than Mercury) has puffed its diameter up to 1.2 times that of Jupiter. This is a 3.5-day orbit producing temperatures above 800 ?. As you would imagine, this transiting world is made to order for analysis of its atmosphere. To follow JWST's future work, we’ll need to start learning new...