Holiday Thoughts on Deep Time

An old pal from high school mentioned in an email the other day that he had an interest in Adam Frank’s work, which we’ve looked at in these pages a number of times. Although my most recent post on Frank involves a 2022 paper on technosignatures written with Penn State’s Jason Wright, my friend was most intrigued by a fascinating 2018 paper Frank wrote for the International Journal of Astrobiology (citation below). The correspondence triggered thoughts of other, much earlier scientists, particularly of Charles Lyell’s Principles of Geology (1830-1833), which did so much to introduce the concept of ‘deep time’ to Europe and played a role in Darwin’s work. Let’s look at both authors, with a nod as well to James Hutton, who largely originated the concept of deep time in the 18th Century. Adam Frank is an astrophysicist at the University of Rochester, and one of those indispensable figures who meshes his scientific specialization (stellar evolution) with a broader view that encompasses...

read more

A Novel Strategy for Catching Up to an Interstellar Object

Reaching ‘Oumuamua through some kind of statite technology, an idea we’ve been kicking around recently, brings up the interesting work of Richard Linares at MIT, who has been working on a “dynamic orbital slingshot” for rendezvous with future objects from the interstellar depths (ISOs). Linares received a Phase I grant from the NASA Innovative Advanced Concepts (NIAC) Program to pursue the idea of a network of statites on sentry duty, any one of which could release the stored energy of the sail to enter a trajectory that would take it to a flyby of an object entering our system on a hyperbolic orbit. The concept is simplicity itself, once you realize that a statite balances the pressure of solar photons against the Sun’s gravitational pull, and essentially hovers in place. As I mentioned when covering Greg Matloff and Les Johnson’s paper on using statites to achieve fast rectilinear trajectories to reach interstellar interlopers, Robert Forward was the one who came up with the idea...

read more

Forbidden Worlds? Theory Clashes with Observation

Back before we knew for sure there were planets around other stars, the universe seemed likely to be ordered. If planet formation was common, then we'd see systems more or less like our own, with rocky inner worlds and gas giants in outer orbits. And if planet formation was a fluke, we'd find few planets to study. All that has, of course, been turned on its head by the abundant discoveries of exoplanets galore. And our Solar System turns out to be anything but a model for the rest of the galaxy. In today's essay, Don Wilkins looks at several recent discoveries that challenge planet formation theory. We can bet that the more we probe the Milky Way, the more we'll find anomalies that challenge our preconceptions. by Don Wilkins The past few decades have not been easy on planet formation theories. Concepts formed on the antiquated Copernican speculation, the commonality of star systems identical to the Solar System, have given way to the strangeness and variety uncovered by Kepler,...

read more

Interstellar Precursor? The Statite Solution

What an interesting object Methone is. Discovered by the Cassini imaging team in 2004 along with the nearby Pallene, this moon of Saturn is a scant 1.6 kilometers in radius, orbiting between Mimas and Enceladus. In fact, Methone, Pallene and another moon called Anthe all orbit at similar distances from Saturn and are dynamically jostled by Mimas. What stands out about Methone is first of all its shape and, perhaps even more strikingly, the smoothness of its surface. We’d like to know what produces this kind of object and would also like to retrieve imagery of both Pallene and Anthe. If something this strange has equally odd companions, is there something about its relationship with both nearby moons and Saturn’s rings that can produce this kind of surface? Image: It's difficult not to think of an egg when looking at Saturn's moon Methone, seen here during a Cassini flyby of the small moon. The relatively smooth surface adds to the effect created by the oblong shape....

read more

SETI: Musings on the Barrow Scale

John Barrow has been on my mind these past few days, for reasons that will become apparent in a moment. In my eulogy for Barrow (1952-2020), I quoted from his book The Left Hand of Creation (Oxford, 1983). I want to revisit that passage for its clarity, something that always inspired me about this brilliant physicist. For it seemed he could render the complex not only accessible but encouragingly pliable, as if scientific exploration always unlocked doors of possibility we could use to our advantage. His was a bright vision. The notion that animated him was that there was something in the sheer process of research that held its own value. Thus: Could there be any shortcuts to the answers to the cosmological questions? There are some who foolishly desire contact with advanced extraterrestrials in order that we might painlessly discover the secrets of the universe secondhand and prematurely extend our understanding. Such a civilization would surely resemble a child who receives as a...

read more

Talking to Starglider

When we’ve discussed interstellar ‘interlopers’ like ‘Oumuamua and 2I/Borisov, the science fiction-minded among us have now and then noted Arthur Clarke’s Rendezvous with Rama (Gollancz, 1973). Although we’ve yet to figure out definitively what ‘Oumuamua is (2/I Borisov is definitely a comet), the Clarke reference is an imaginative nod to the possibility that one day an alien craft might enter our Solar System during a gravitational assist maneuver and be flung outward on whatever its mission was (in Rama’s case, out in the direction of the Large Magellanic Cloud). Since we’ll never see ‘Oumuamua again, we wait with great anticipation the work of the Legacy Survey of Space and Time (LSST), which will be run via the Vera Rubin Telescope (first light in 2025). Estimates vary widely but the consensus seems to be that with a telescope capable of imaging the entire visible sky in the southern hemisphere every few nights, the LSST should produce more than a few interstellar objects,...

read more

A Resonant Sub-Neptune Harvest at HD 110067

The ancient notion of the ‘music of the spheres’ sounds primitive until you learn something about planetary dynamics. Gravity is wondrous and can nudge planets in a given system into orbits that show an obvious mathematical ratio. Two planets in resonance can emerge, for instance, in a 2:1 ratio, where one goes around its star twice in the time it takes the second to orbit it once. Such linkages might seem almost coincidental to the casual observer until the coincidences begin to pile up. In the exoplanet system at HD 110067, for example, resonance flourishes, so much so that we have six planets moving in a ‘resonance chain.’ No coincidence here, just gravity at work, although an actual coincidence is that just when I finished a post highlighting system dynamics in closely packed environments like TRAPPIST-1 as a ‘brake’ on inbound comets, an international team should reveal HD 110067’s resonance chain. It’s a beauty, for all six planets not only move in harmonic rhythm but also turn...

read more

Cometary Impacts: Looking for Life in the Right Places

If you had to choose, which planetary system would you gauge most likely to house a life-bearing planet: Proxima Centauri or TRAPPIST-1? The question is a bit loaded given that there are seven TRAPPIST-1 planets, hence a much higher chance for success there than in a system that (so far) has produced evidence for only two worlds. But there are other factors having to do with the delivery of prebiotic materials by comet, which is the subject of a new paper from Richard Anslow (Cambridge Institute of Astronomy). “It’s possible that the molecules that led to life on Earth came from comets,’’ Anslow reminds us, “so the same could be true for planets elsewhere in the galaxy.” So let’s untangle this a bit. We don’t know whether comets are vital to the origin of life on Earth or any other world, and Anslow (working with Cambridge colleagues Amy Bonsor and Paul B. Rimmer) does not argue that they are. What their paper does is to examine the environments most likely to be affected by cometary...

read more

Tightening Proxima Centauri’s Orbit (and an Intriguing Speculation)

Although I think most astronomers have assumed Proxima Centauri was bound to the central binary at Alpha Centauri, the case wasn’t definitively made until fairly recently. Here we turn to Pierre Kervella (Observatoire de Paris), Frédéric Thévenin (Côte d’Azur Observatory) and Christophe Lovis (Observatoire Astronomique de l'Université de Genève). We last saw Dr. Kervella with reference to a paper on aerographite as a sail material, but his work has appeared frequently in these pages, analyzing mission trajectories and studying the Alpha Centauri system. Here he and his colleagues use HARPS spectrographic data to demonstrate that we have at Centauri a single gravitationally bound triple system. This is important stuff; let me quote the paper on this work to explain why (italics mine): Although statistical considerations are usually invoked to justify that Proxima is probably in a bound state, solid proof from dynamical arguments using astrometric and radial velocity (RV) measurements...

read more

The Odds on Alpha Centauri

How extraordinary that the nearest star to Earth is actually a triple system, the tight central binary visually merged as one bright object, the third star lost in the background field but still a relatively close 13000 or so AU from the others. Humans couldn’t have a better inducement to achieve interstellar flight on the grounds of these stars alone. We get three stellar types: The G-class Centauri A, the K-class Centauri B, both of which are capable of hosting planets, perhaps habitable, of their own. And then we have Proxima Centauri, opening up M-class red dwarf stars to close investigation, and we already know of a planet in the habitable zone there, adding to the zest of the venture. If extraterrestrial beings in a system like this would have even more inducement to travel, with another star’s planets perhaps as close to them as our own system’s worlds are to us, we humans are also spurred to undertake a journey, because 4.2 light years is a mere stone’s throw in the overall...

read more

Is Interstellar Flight Inevitable?

The wish that humans will one day walk on exoplanets is a natural one. After all, the history of exploration is our model. We look at the gradual spread of humanity, its treks and voyages of discovery, and seamlessly apply the model to a future spacefaring civilization. Science fiction has historically made the assumption through countless tales of exploration. This is the Captain Cook model, in which a crew embarks on a journey into unknown regions, finds new lands and cultures, and returns with samples to stock museums and tales of valor and curiosity. Captain Cook didn’t have a generation ship, but HMS Endeavour was capable of voyages lasting years, stocking itself along the way and often within reach of useful ports of call. A scant 250 years later, however, we need to consider evolutionary trends and ask ourselves whether our ‘anthropocene’ era will itself be short-lived. Even as we ask whether human biology is up for voyages of interstellar magnitude, we should also question...

read more

Eavesdropping on the Neighbors

Given that interstellar communications have been on my mind recently, I was delighted to receive this essay from Don Wilkins. Based in St. Louis, where he is a now-retired aerospace engineer, Don has plenty of experience in avionics and has the chops to know how to make widely-dispersed aircraft talk to each other. Here his scope is a bit wider: What are the implications of 'lurker' probes, the conceivably ancient (or newer) technologies from an extraterrestrial civilization that might be monitoring our planet? If such exist, their communications become a SETI target, and the question of how their network might operate is an intriguing one. I had no idea, for example, that the idea of gravitational lensing for such communications had made its way into the SETI field, but Don here acquaints us with several studies that tackle the concept, along with other insights as found below. by Don Wilkins If an expansionist star faring civilization exists, it is likely to construct an...

read more

Mars Agriculture – Knowledge Gaps for Regolith Preparation

Let’s break for a moment with interstellar issues to finish up a story I first covered at the beginning of the year. In 2022, members of the Interstellar Research Group led by Doug Loss began exploring the biological side of establishing a human presence on Mars. By ‘biological,’ what the team was looking at was how to create soil as opposed to regolith, soil with the microbial components needed to produce crops for human consumption on Mars. Alex Tolley wrote the idea up in MaRMIE: The Martian Regolith Microbiome Inoculation Experiment. Today’s post is the finalized document that has grown out of this effort, an attempt to foster further research by offering a framework for experiment. While the IRG lacks the means of executing these experiments itself, it offers this paper as a contribution to planetary studies to connect with those who can. by Alex Tolley and Doug Loss* * Contact: Doug Loss at douglas.loss@irg.space Abstract The proposed designs for the settlement of Mars include...

read more

Exoplanet Detection: Nudging Into the Rayleigh Limit

We’re building some remarkably large telescopes these days. Witness the Giant Magellan Telescope now under construction in Chile’s Atacama desert. It’s to be 200 times more powerful than any research telescope currently in use, with 368 square meters of light collection area. It incorporates seven enormous 8.5 meter mirrors. That makes exoplanet work from the Earth’s surface a viable proposition, but look at the size of the light bucket we need to make it work. Three mirrors like that shown below are now in place, and the University of Arizona’s Mirror Lab is building number 6 now. Image: University of Arizona Richard F. Caris Mirror Lab staff members Damon Jackson (left) and Conrad Vogel (right) in the foreground looking up at the back of primary mirror segment five, April 2019. Credit: Damien Jemison; Giant Magellan Telescope - GMTO Corporation. CC BY-NC-ND 4.0. Imaging an exoplanet from the Earth’s surface is complicated by the Rayleigh Limit, which governs the resolution of our...

read more

A ‘Pinched’ Beam for Interstellar Flight

Take a look at the image below. It’s a jet coming off the quasar 3C273. I call your attention to the length of this jet, some 100,000 light years, which is roughly the distance across the Milky Way. Jeff Greason pointed out at the Montreal symposium of the Interstellar Research Group that images like this suggest it may be possible for humans to produce ‘pinched’ relativistic electron jets over the much smaller distances needed to propel a spacecraft out of the Solar System. This is an intriguing image if you’re interested in high-energy beams pushing payloads to nearby stars. Greason is a self-described ‘serial entrepreneur,’ the holder of some 29 patents and chief technologist of Electric Sky, which is all about beaming energy to craft much closer to home. But he moonlights as chairman of the Tau Zero Foundation and is a well known figure in interstellar studies. Placing beaming into context is a useful exercise, as it suggests alternative ways to generate and use a beam. In all of...

read more

The Order of Interstellar Arrival

Writers have modeled the arrival of an extraterrestrial probe in our Solar System in a number of interesting science fiction texts, from Clarke’s Rendezvous with Rama (1973) to the enigmatic visitors of Ted Chiang’s "Story of Your Life,” which Hollywood translated into the film Arrival (2016). In between I might add the classic ‘saucer landing on the White House lawn’ trope of The Day the Earth Stood Still (1951), based on a Harry Bates short story. All these and many other stories raise the question: What if before we make a radio or optical SETI detection, an extraterrestrial scout actually shows up? Graeme Smith (UC: Santa Cruz) goes to work on the idea in a recent paper in the International Journal of Astrobiology, where he focuses on the mechanism of interstellar dispersion. The model has obvious ramifications for ourselves. We are beings who have begun probing nearby space with vehicles like Pioneer and Voyager, and in our early stages of exploration we could conceivably be...

read more

To Build an Interstellar Radio Bridge

I sometimes imagine Claudio Maccone having a particularly vivid dream, a bright star surrounded by a ring of fire that all but grazes its surface. And from this ring an image begins to form behind him, kilometers wide, dwarfing him and carrying in its pixels the view of a world no one has ever seen. The dream is half visual, half diagrammatic, but it’s all about curving Einsteinian spacetime, so that light flows along the gravity well to be bent into a focus that extends into linear infinity. My slightly poetic vision of what happens beyond 550 AU or so doesn’t do justice to the intrinsic beauty of the mathematics, which Maccone learned to unlock decades ago as he explored the concept of an 'Einstein ring' as fine-tuned by Von Eshleman at Stanford. When I met him (at one of Ed Belbruno’s astrodynamics conferences at Princeton in 2006), we and Greg Matloff and wife C talked about lensing at breakfast one morning. Even then he was afire with the concept. He’d been probing it since the...

read more

Atmospheric Types and the Results from K2-18b

The exoplanet K2-18b has been all over the news lately, with provocative headlines suggesting a life detection because of the possible presence of dimethyl sulfide (DMS), a molecule produced by life on our own planet. Is this a 'Hycean' world, covered with oceans under a hydrogen-rich atmosphere? Almost nine times as massive as Earth, K2-18b is certainly noteworthy, but just how likely are these speculations? Centauri Dreams regular Dave Moore has some thoughts on the matter, and as he has done before in deeply researched articles here, he now zeroes in on the evidence and the limitations of the analysis. This is one exoplanet that turns out to be provocative in a number of ways, some of which will move the search for life forward. by Dave Moore 124 light years away in the constellation of Leo lies an undistinguished M3V red dwarf, K2-18. Two planets are known to orbit this star: K2-18c, a 5.6 Earth mass planet orbiting 6 million miles out, and K2-18b, an 8.6 Earth mass planet...

read more

Galactic Civilizations: Does N=1?

I don’t suppose that Frank Drake intended his famous Drake Equation to be anything more than a pedagogical device, or rather, an illustrative tool to explain what he viewed as the most significant things we would need to know to figure out how many other civilizations might be out there in the galaxy. This was back in 1961, and naturally the equation was all about probabilities, because we didn’t have hard information on most of the factors in the equation. Drake was already searching for radio signals at Green Bank, in the process inventing SETI as practiced through radio telescopes. The factors here should look familiar to most Centauri Dreams readers, but let’s run through them, because among the old hands here we also get an encouraging number of students and people new to the field. N is the number of civilizations with communications potential in the galaxy, with R* the rate of star formation, fp the fraction of stars with planets, ne the number of planets that can support life...

read more

SETI: A New Kind of Stellar Engine

The problem of perspective haunts SETI, and in particular that branch of SETI that has been labeled Dysonian. This discipline, based on Freeman Dyson’s original notion of spheres of power-gathering technology enclosing a star, has given rise to the ongoing search for artifacts in our astronomical data. The fuss over KIC 8462852 (Boyajian’s Star) a few years back involved the possibility that it was orbited by a megastructure of some kind, and thus a demonstration of advanced technology. Jason Wright and team at Penn State have led searches, covered in these pages, for evidence of Dyson spheres in other galaxies. The Dysonian search continues to widen. I cite a problem of perspective in that we have no real notion of what we might find if we finally locate signs of extraterrestrial builders in our data. It’s so comfortable to be a carbon-based biped, but the entities we’re trying to locate may have other ways of evolving. Clément Vidal, a French philosopher and one of the most...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives