I hadn’t intended to return so quickly to the issue of high-redshift galaxies, but SPT0418-47 jibes nicely with last week's piece on 13.5 billion year old galaxies as studied by Penn State’s Joel Leja and colleagues. In that case, the issue was the apparent maturity of these objects at such an early age in the universe. Today’s work, reported in a paper in The Astrophysical Journal Letters, comes from a team led by Bo Peng at Cornell University. It too uses JWST data, in this case targeting a previously unseen galaxy the instrument picked out of the foreground light of galaxy SPT0418-47. In both cases, we’re seeing data that challenge conventional understanding of conditions in this remote era. This is evidence, but of what? Are we wrong about the basics of galaxy formation? Do we need to recalibrate the models we use to understand astrophysics at high-redshift? SPT0418-47 is the galaxy JWST was being used to study, an intriguing subject in its own right. This is an infant galaxy...
High Redshift Caution
When something turns up in astronomical data that contradicts long accepted theory, the way forward is to proceed with caution, keep taking data and try to resolve the tension with older models. That would of course include considering the possibilities of error somewhere in the observations. All that is obvious enough, but a new paper on JWST data on high-redshift galaxies is striking in its implications. Researchers examining this primordial era have found six galaxies, from no more than 500 to 700 million years after the Big Bang, that give the appearance of being massive. We’re looking at light from objects 13.5 billion years old that should be anything but mature, if compact, galaxies. That’s a surprise, and it’s fascinating to see the scrutiny to which these findings have been exposed. The editors of Nature have helpfully made available a peer review file containing back and forth comments between the authors and reviewers that give a jeweler’s eye look at how intricate the...
How Common Are Planets Around Red Dwarf Stars?
We’re beginning to learn how common planets are around stars of various types, but M-dwarfs get special attention given their role in future astrobiological studies. As I’ve just been talking about CARMENES, the Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs program, I’ll fold in today’s news about their release of 20,000 observations covering more than 300 stars, for we can mine some data here about planet occurrence rates. 59 new planets turn up in the spectroscopic data gathered at the Calar Alto Observatory in Span, with about 12 thought to be in the habitable zone of their star. I’ll await with interest our friend Andrew LePage’s assessment. His habitable zone examinations serve as a highly useful reality check. I mentioned spectrographic data above. The CARMENES instruments are built for optical as well as near-infrared studies, and have been used to explore nearby red dwarfs and their possible planets since...
Uranus Orbiter and Probe: Implications for Icy Moons
What do you get if you shake ice in a container with centimeter-wide stainless steel balls at temperature of –200 ?C? The answer is a kind of ice with implications for the outer Solar System. I just ran across an article in Science (citation below) that describes the resulting powder, a form of ‘amorphous ice,’ meaning ice that lacks the familiar crystalline arrangement of regular ice. There is no regularity here, no ordered structure. The two previously discovered types of amorphous ice – varying by their density – are uncommon on Earth but an apparently standard constituent of comets. The new medium-density amorphous ice may well be produced on outer system moons, created through the shearing process that the researchers, led by Alexander Rosu-Finsen at University College London, produced in their lab work. There is a good overview of this water ‘frozen in time’ in a recent issue of Nature. The article quotes Christoph Salzmann (UCL), a co-author on the Science paper: The team used...
Wolf 1069b: Why System Architecture Matters
Let’s look at a second red dwarf planet in this small series on such, this one being Wolf 1069b. I want to mention it partly because of the prior post on K2-415b, where we had the good fortune to be dealing with a transiting world around an M-dwarf that should be useful in future atmospheric characterization efforts. Wolf 1069b, by contrast, was found by radial velocity methods, and I’m less interested in whether or not it’s in a ‘habitable’ orbit than in the system architecture here, which raises questions. This work, recounted in a recent paper in Astronomy & Astrophysics, describes a planet that is not just Earth-sized, as is K2-415b, but roughly equivalent to Earth in mass, making a future search for biosignatures interesting once we have the capability of collecting photons directly from the planet. If the planet has an atmosphere, argue the authors of the paper, its surface temperature could reach 13 degrees Celsius, certainly a comfortable temperature for liquid water. A...
The Relevance of K2-415b
I want to mention the recent confirmation of K2-415b because this world falls into an interesting category: Planets with major implications for studying their atmospheres. Orbiting an M5V M-dwarf every 4.018 days at a distance of 0.027 AU, this is not a planet with any likelihood for life. Far from it, given an equilibrium temperature expected to be in the range of 400 K (the equivalent figure for Earth is 255 K). And although it’s roughly Earth-sized, K2-415b turns out to be at least three times more massive. What this planet has going for it, though, is that it transits a low mass star, and at 70 light years, it’s close. Consider: If we want to take advantage of transmission spectroscopy to study light being filtered through the planetary atmosphere during ingress and egress from the transit, nearby M-dwarf systems make ideal targets. Their habitable zones are close in, so we get frequent transits around small stars. But the number of Earth-sized transiting worlds around nearby...
A Mission Architecture for the Solar Gravity Lens
Over the past several years we’ve looked at two missions that are being designed to go beyond the heliosphere, much farther than the two Voyagers that are our only operational spacecraft in what we can call the Local Interstellar Medium. Actually, we can be more precise. That part of the Local Interstellar Medium where the Voyagers operate is referred to as the Very Local Interstellar Medium, the region where the LISM is directly affected by the presence of the heliosphere. The Interstellar Probe design from Johns Hopkins Applied Physics Laboratory and the Jet Propulsion Laboratory’s Solar Gravity Lens (SGL) mission would pass through both regions as they conduct their science operations. Both probes have ultimate targets beyond the VLISM, with Interstellar Probe capable of looking back at the heliosphere as a whole and reaching distances are far as 1000 AU still operational and returning data to Earth. The SGL mission begins its primary science mission at the Sun’s gravitational...
Into the Maelström
"'This,' said I at length, to the old man -- 'this can be nothing else than the great whirlpool of the Maelström'... The ordinary accounts of this vortex had by no means prepared me for what I saw. That of Jonas Ramus, which is perhaps the most circumstantial of any, cannot impart the faintest conception either of the magnificence, or of the horror of the scene -- or of the wild bewildering sense of the novel which confounds the beholder." So wrote Edgar Allen Poe in 1841 in a short story called "A Descent into The Maelström," reckoned by some to be an early instance of science fiction. In today's essay, Adam Crowl explores another kind of whirlpool, armed with the tools of mathematics to take the deepest plunge imaginable, into the maw of a supermassive black hole. Adam's always fascinating musings can be followed on his Crowlspace site. by Adam Crowl The European Southern Observatory’s (ESO) GRAVITY instrument is a beam combiner in the infra-red K-band that operates as a part of...