Getting Europa Clipper to its target to analyze the surface of Jupiter’s most interesting moon (in terms of possible life, at least) sets up a whole range of comparative studies. We have been mining data for many years from the Galileo mission and will soon be able – at last! – to compare its results to new images pulled in by Europa Clipper’s flybys. Out of this comes an interesting question recently addressed by a new paper in JGR Planets: Is Europa’s ice shell changing in position with time?

An answer here would establish whether we are dealing with a free-floating shell moving at a different rate than the salty ocean beneath. Computer modeling has previously suggested that the ocean’s effects on the shell may affect its movement, but this is evidently the first study that calculates the amount of drag involved in this scenario. Ocean flow may explain surface features Galileo revealed, with ridges and cracks as evidence of the stretching and straining effects of currents below.

Hamish Hay (University of Oxford) is lead author of the paper on this work, which was performed at the Jet Propulsion Laboratory during his postdoctoral tenure there. The study reveals a net torque on the ice shell from ocean currents moving as alternating east-west jets, sometimes spinning up the shell and at other times spinning it down as convection is altered by the evolution of the moon’s interior. Says Hay:

“Before this, it was known through laboratory experiments and modeling that heating and cooling of Europa’s ocean may drive currents. Now our results highlight a coupling between the ocean and the rotation of the icy shell that was never previously considered.”

Thus we are forced to reconsider some old assumptions, one of them being that the primary force acting on Europa’s surface is the gravitational pull of Jupiter. The paper calculates that an average ‘jet speed’ of at least ~1 cm s-1 produces enough ice-ocean torque to be comparable to tidal torque. Calling these results “a huge surprise,” Europa Clipper project scientist Robert Pappalardo (JPL) notes that thinking about ocean circulation as the driver of surface cracks and ridges takes scientists in a new direction: “[G]eologists don’t usually think, ‘Maybe it’s the ocean doing that.’”

Image: This view of Jupiter’s icy moon Europa was captured by JunoCam, the public engagement camera aboard NASA’s Juno spacecraft, during the mission’s close flyby on Sept. 29, 2022. The picture is a composite of JunoCam’s second, third, and fourth images taken during the flyby, as seen from the perspective of the fourth image. North is to the left. The images have a resolution of just over 1 to 4 kilometers per pixel. As with our Moon and Earth, one side of Europa always faces Jupiter, and that is the side of Europa visible here. Europa’s surface is crisscrossed by fractures, ridges, and bands, which have erased terrain older than about 90 million years. Credit: NASA, with image processing by citizen scientist Kevin M. Gill.

It was the introduction of drag into the simulations that demonstrated the effects of ocean currents on the shell’s rotational speed. The under-ice flow depicted in this paper is complex, with supercomputing modeling showing water flow being bent by Europa’s overall rotation into east-west and west-east currents. The results depend upon a model of internal heating from radioactive decay as well as tidal heating to drive warmer water to the top of the ocean. They imply changes to the surface over time as the amount of interior heating varies, a process that presumably would occur on other ocean worlds as well.

The paper notes another aspect of the drag model that is unusual:

We have for the first time estimated the time-mean stress field and resulting torque that must exist between the flowing ocean and solid ice shell of Europa. Perhaps unintuitively, the stress field due to alternating zonal jets does not necessarily cancel out once integrated over the entire surface. This means that it is likely that ocean dynamics that manifest in east-west jets exert a net unidirectional torque on the ice shells of Europa and other ocean worlds.

Moreover, ice-ocean torque is a process whose effects can change dramatically. Notice the reversal process described below. The ‘equatorial jet’ mentioned here is accompanied in the simulations by one to two alternating jets at higher latitudes:

The scaling analysis shows that strengthening of turbulent convection reverses the equatorial jet and resulting torque such that it acts against the direction of rotation. The reversal occurs when the thermal buoyancy forcing becomes large enough to drive highly turbulent convection. If the energetic state of Europa’s interior has changed sufficiently over time, perhaps due to the depletion of radioactive heat producing elements or changes in tidal forcing, it is possible that a reversal has taken place. We speculate that this provides a novel mechanism to stop, start, and even reverse nonsynchronous rotation of the ice shell.

So we see the ice shell’s rotation being speeded up and at other times slowed down by the ocean currents below, sometimes stretching and at other times collapsing, with possible effects on surface topography that Europa Clipper can examine. How interesting that we can learn about the dynamics of the ocean below through the speed of the shell’s rotation, which is something the mission may be able to measure. The craft, now in assembly, test, and launch operations phase at JPL, is on target for a launch in 2024. Orbital operations at Jupiter begin in 2030, with some 50 Europa flybys on the schedule.

The paper is Hay et al., “Turbulent Drag at the Ice-Ocean Interface of Europa in Simulations of Rotating Convection: Implications for Nonsynchronous Rotation of the Ice Shell,” JGR Planets 19 February 2023 (full text).

tzf_img_post