How extraordinary that the nearest star to Earth is actually a triple system, the tight central binary visually merged as one bright object, the third star lost in the background field but still a relatively close 13000 or so AU from the others. Humans couldn’t have a better inducement to achieve interstellar flight on the grounds of these stars alone. We get three stellar types: The G-class Centauri A, the K-class Centauri B, both of which are capable of hosting planets, perhaps habitable, of their own.

And then we have Proxima Centauri, opening up M-class red dwarf stars to close investigation, and we already know of a planet in the habitable zone there, adding to the zest of the venture. If extraterrestrial beings in a system like this would have even more inducement to travel, with another star’s planets perhaps as close to them as our own system’s worlds are to us, we humans are also spurred to undertake a journey, because 4.2 light years is a mere stone’s throw in the overall galactic distribution.

Image: The central binary at Alpha Centauri, with the two stars only resolved in the x-ray image. Credit: X-ray: NASA/CXC/University of Colorado/T.Ayres; Optical: Zdenek Bardon/ESO.

I like this image, used by Dirk Schulze-Makuch to illustrate a recent popular science article, because it includes the Chandra X-Ray imagery. That’s how we can separate the central stars, which are at times nearly as close as Saturn is to the Sun while they orbit their common barycenter. Centauri Dreams readers will recognize Schulze-Makuch (Technical University Berlin and an adjunct professor at Washington State) not only as a prolific writer but the author of a host of scientific papers including many we’ve looked at in these pages. He’s played a valuable role in presenting astrobiological matters to the general public, part of the flowering of interstellar investigation that continues as we keep finding interesting worlds to explore.

If you’re wondering about Proxima Centauri’s location, the image below flags it. Credit: ESO/B. Tafreshi (twanight.org)/Digitized Sky Survey 2; Acknowledgement: Davide De Martin/Mahdi Zamani).

I like to keep an eye on what appears in the popular press from respected scientists, because they’re bringing credibility to matters that often get distorted by mainstream media attention (not to mention what happens on social media sites). We should always give a nod to scientists willing to explain their work and the broader issues involved given that kind of competition for the public’s attention. It’s interesting in this case to get Schulze-Makuch’s take on habitability at Alpha Centauri. He’s pessimistic about Proxima but is surprisingly bullish on Centauri A and B:

The other two stars in the system are believed to have planets, although they have not been confirmed. (A possible Neptune-size planet was reported in 2021 orbiting Alpha Centauri A at roughly the same distance as Earth orbits the Sun, but this could turn out to be a dust cloud instead.) The apparent lack of any brown dwarfs or gas giants close to Alpha Centauri A and B make the likelihood of terrestrial planets greater than it would be otherwise, at least in theory. The chances of a rocky, potentially habitable planet in our neighboring solar system might therefore be as high as 75 percent.

The Proxima Centauri problem is, of course, the X-ray flux, although Schulze-Makuch also considers tidal lock a distinct negative. The Chandra data (citation below) revealed a relatively benign influx of X-rays for Centauri A and B, making them fine hosts for life if it can develop there. But Proxima is deeply problematic, receiving an average dose of X-rays some 500 times greater than Earth’s, and some 50,000 times as great during periods of flare activity, which M-dwarfs are particularly prone to in their younger days.

Here the word ‘younger’ is a bit deceptive. Recall that this kind of star can live for several trillion years. That’s a bit humbling, considering that the universe itself is thought to be 13.8 billion years old. In that sense all M-dwarfs are ‘young.’

Just as we can zoom in via X-ray to see the central stars, we can also take a look at Proxima Centauri’s movements via spectroscopic data, which we’ll examine next time, along with a fascinating speculation on the origin of Proxima b.

For more on the X-ray environment at Alpha Centauri, see Ayres, “Alpha Centauri Beyond the Crossroads,” Research Notes of the AAS Vol. 2, No. 1 (January, 2018), 17 (abstract). The possibility of a ‘warm Neptune’ at Alpha Centauri is discussed in Wagner et al., “Imaging low-mass planets within the habitable zone of α Centauri,” Nature Communications 12, Article number: 922 (2021). Full text. We’ll be talking about this one a bit more in coming days.