If we ever thought it would be easy to tell whether a planet was 'habitable' or not, Stephen Dole quickly put the idea to rest when he considered all the factors involved in his study Habitable Planets for Man (1964). In this second part of his essay on habitability, Dave Moore returns to Dole's work and weighs these factors in light of our present knowledge. What I particularly appreciate about this essay in addition to Dave's numerous insights is the fact that he has brought Dole's work back into focus. The original Habitable Planets for Man was a key factor in firing my interest in writing about interstellar issues. And Centauri Dreams reader Mark Olson has just let me know that Dole appears as a major character in a novel by Harry Turtledove called Three Miles Down. It's now in my reading stack. by Dave Moore In Part I of this essay, I listed the requirements for human habitability in Stephen Dole’s report, Habitable Planets for Man. Now I’ll go over what we’ve subsequently...
The “Habitability” of Worlds (Part I)
Dave Moore is a Centauri Dreams regular who has long pursued an interest in the observation and exploration of deep space. He was born and raised in New Zealand, spent time in Australia, and now runs a small business in Klamath Falls, Oregon. He counts Arthur C. Clarke as a childhood hero, and science fiction as an impetus for his acquiring a degree in biology and chemistry. Dave has kept up an active interest in SETI (see If Loud Aliens Explain Human Earliness, Quiet Aliens Are Also Rare) as well as the exoplanet hunt. In the essay below, he examines questions of habitability and how we measure it, issues that resonate in a time when we are preparing to evaluate exoplanets as life-bearing worlds and look for their biosignatures. by Dave Moore In this essay I’ll be examining the meaning of the word ‘habitable’ when applied to planetary bodies. What do we mean when we talk about a habitable planet or a planet’s habitability? What assumptions do we make? The first part of this essay...
A Liquid Water Mechanism for Cold M-dwarf Planets
A search for liquid water on a planetary surface may be too confining when it comes to the wide range of possibilities for supporting life. We see that in our own Solar System. Consider the growing interest in icy moons like Europa and Enceladus, where there is no possibility of surface water but a potentially rich environment under a thick layer of ice. Extending these thoughts into the realm of exoplanets reminds us that our calculations about how many life-bearing worlds are out there may be in need of revision. This is the thrust of work by Lujendra Ojha (Rutgers University) and colleagues, as developed in a paper in Nature Communications and presented at the recent Goldschmidt geochemistry conference in Lyon. What Ojha and team point out is that radiogenic heating can maintain liquid water below the surface of planets in M-dwarf systems, and that added into our astrobiological catalog, such worlds, orbiting a population of stars that takes in 75 percent or more of all stars in...
Reducing the Search Space with the SETI Ellipsoid
SETI’s task challenges the imagination in every conceivable way, as Don Wilkins points out in the essay below. A retired aerospace engineer with thirty-five years experience in designing, developing, testing, manufacturing and deploying avionics, Don is based in St. Louis, where he is an adjunct instructor of electronics at Washington University. He holds twelve patents and is involved with the university’s efforts at increasing participation in science, technology, engineering, and math. The SETI methodology he explores today offers one way to narrow the observational arena to targets more likely to produce a result. Can spectacular astronomical phenomena serve as a potential marker that could lead us to a technosignature? by Don Wilkins Finite SETI search facilities searching a vast search volume must set priorities for exploration. Dr. Jill Tarter, Chair Emeritus for SETI Research, describes the search space as a “nine-dimensional haystack” composed of three spatial, one temporal...
Earth in Formation: The Accretion of Terrestrial Worlds
It would be useful to have a better handle on how and when water appeared on the early Earth. We know that comets and asteroids can bring water from beyond the ‘snowline,’ that zone demarcated by temperatures beyond which volatiles like water, ammonia or carbon dioxide are cold enough to condense into ice grains. For our Solar System, that distance in our era is 5 AU, roughly the orbital distance of Jupiter, although the snowline would have been somewhat closer to the Sun during the period of planet formation. So we have a mechanism to bring ices into the inner Solar System but don’t know just how large a role incoming ices played in Earth’s development. Knowing more about the emergence of volatiles on Earth would help us frame what we see in other stellar systems, as we evaluate whether or not a given planet may be habitable. Usefully, there are ways to study our planet’s formation that can drill down to its accretion from the materials in the original circumstellar disk. A new...
On Retrieving Dyson
One of the pleasures of writing and editing Centauri Dreams is connecting with people I’ve been writing about. A case in point is my recent article on Freeman Dyson’s “Gravitational Machines” paper, which has only lately again come to light thanks to the indefatigable efforts of David Derbes (University of Chicago Laboratory Schools, now retired). See Freeman Dyson’s Gravitational Machines for more, as well as the follow-up, Building the Gravitational Machine. I was delighted to begin an email exchange with Dr. Derbes following the Centauri Dreams articles, out of which emerges today’s post, which presents elements of that exchange. I run this particularly because of my continued fascination with the work and personality of Freeman Dyson, who is one of those rare individuals who seems to grow in stature every time I read or hear about his contributions to physics. It was fascinating to receive from Dr. Derbes not only the background on how this manuscript hunter goes about his craft,...
Sunshade: A New Trek through ‘Daedalus Country’
Letting the imagination roam has philosophical as well as practical benefits. From the interstellar perspective, consider the Daedalus starship, designed with loving detail by members of the British Interplanetary Society in the 1970s. The mammoth (54,000 ton) vehicle was never conceived as remotely feasible at our stage of technology. But ‘our stage of technology’ is exactly the point the project illustrated. Daedalus demonstrated that there was nothing in physical law to prevent the construction of a starship. The question was, when would we reach the level of building it? For as Robert Forward frequently pointed out, interstellar flight could no longer be considered impossible. We can’t know the answer to the question, but recall that before Daedalus, there was a lot of ‘informed’ opinion that interstellar flight was a chimera, and that all species were necessarily restricted to their home systems. Daedalus made the point debatable. If a civilization had a thousand year jump on us...
What We’re Learning about TRAPPIST-1
It’s no surprise that the James Webb Space Telescope’s General Observers program should target TRAPPIST-1 with eight different efforts slated for Webb’s first year of scientific observations. Where else do we find a planetary system that is not only laden with seven planets, but also with orbits so aligned with the system’s ecliptic? Indeed, TRAPPIST-1’s worlds comprise the flattest planetary arrangement we know about, with orbital inclinations throughout less than 0.1 degrees. This is a system made for transits. Four of these worlds may allow temperatures that could support liquid water, should it exist in so exotic a locale. Image: This diagram compares the orbits of the planets around the faint red star TRAPPIST-1 with the Galilean moons of Jupiter and the inner Solar System. All the planets found around TRAPPIST-1 orbit much closer to their star than Mercury is to the Sun, but as their star is far fainter, they are exposed to similar levels of irradiation as Venus, Earth and Mars...
Abundant Phosphorus in Enceladus Ocean Increases Habitability: But is Enceladus Inhabited?
Finding the right conditions for life off the Earth justifiably drives many a researcher's work, but nailing down just what might make the environment beneath an icy moon's surface benign isn't easy. The recent wave of speculation about Enceladus revolves around the discovery of phosphorus, a key ingredient for the kind of life we are familiar with. But Alex Tolley speculates in the essay below that we really don't have a handle on what this discovery means. There's a long way between 'habitable' and 'inhabited,' and many data points remain to be analyzed, most of which we have yet to collect. Can we gain the knowledge we need from a future Enceladus plume mission? by Alex Tolley There has been abundant speculation about the possibility of life in the subsurface oceans of icy moons. Europa’s oceans with possible hydrothermal vents mimicking Earth’s abyssal oceans and the probable site of the origin of life, caught our attention now that Mars has no extant surface life. Arthur C...
Tightening our Understanding of Circumbinary Worlds
I’m collecting a number of documents on gravitational wave detection and unusual concepts regarding their use by advanced civilizations. It’s going to take a while for me to go through all these, but as I mentioned in the last post, I plan to zero in on the intriguing notion that civilizations with abilities far beyond our own might use gravitational waves rather than the electromagnetic spectrum to serve as the backbone of their communication system. It’s a science fictional concept for sure, though there may be ways it could be imagined for a sufficiently advanced culture. For today, though, let’s look at a new survey that targets highly unusual planets. Binaries Escorted by Orbiting Planets has an acronym I can get into: BEBOP. It awakens the Charlie Parker in me; I can almost smell the smoky air of a mid-20th century jazz club and hear the clinking of glasses above Parker’s stunning alto work. I was thinking about the great sax player because I had just watched, for about the...
Building the Gravitational Machine
A friend and I were sitting in a diner some time back talking mostly about old movies (my passion is for black-and-white films from 1927 to the death of Bogart in 1957). Somehow the topic of gravity came up, I suspect because we had homed in on early 50’s science fiction films. Anyway, I remember his eyebrows raising when I mentioned how puny a force gravity was. I can understand why. We think about massive objects when we think about gravity, but of course it takes a lot of mass to get a little gravity. In fact, gravity is some 1038 times weaker than the strong force that holds atomic nuclei together, easily illustrated by pointing out to my friend that I was overcoming an entire planet’s worth of gravity by lifting the salt shaker on the table. I learned from Greg Matloff and Eugene Mallove’s The Starflight Handbook that despite Freeman Dyson’s early interest in using the gravitational force to capture energy from astronomical objects, it was Stanislaw Ulam who first pondered the...
Inadvertent Test Post
Those of you who follow Centauri Dreams through email probably received an inadvertent test post this morning. My apologies. The post was triggered by work on the site's internals and was generated automatically by the email software module. Work on the site continues, but I think the email issue is fixed, so I anticipate no more of these. Thanks for your patience.
Freeman Dyson’s Gravitational Machines
What an intriguing thing to find Freeman Dyson’s “Gravitational Machines” paper popping up on arXiv. This one is yet another example of Dyson’s prescience, for in it he examines, decades before the actual event, how gravitational waves could be produced and detected, although he uses neutron stars rather than black holes as his focus. Fair enough. When this was written, in 1962, black holes were far more conjectural than they appear in most of the scientific literature today. But what a tangled history this paper presents. First of all, how does a 1962 paper get onto arXiv? A quick check reveals the uploader as David Derbes, a name that should resonate with Dyson purists. Derbes (University of Chicago Laboratory Schools, now retired) is the power behind getting Dyson’s lectures on quantum electrodynamics, first given at Cornell in 1951, into print in the volume Advanced Quantum Mechanics (World Scientific Publishing, 2007). He’s also an editor on Sidney Coleman’s Lectures on...
The Prevalence of ‘Jupiters’ around Larger Stars
Work on the Centauri Dreams internals continues, with the unwelcome result that the site has been popped offline twice because of a possible security problem. Needless to say, this has to be resolved before I can move forward on other aspects of the rebuild. While I deal with that issue, let me respond to a few backchannel questions about yesterday’s post on gas giants in red dwarf planetary systems. What I’m being asked about is my comment that gas giants like Jupiter, at similar distances and installation, around other classes of stars are common compared to what we see at red dwarfs. This has been a problematic issue, and the matter is a long way from achieving a consensus among researchers. A moment’s reflection yields the reason: Finding gas giants in outer system orbits around a star like the Sun is no easy matter. Radial velocity is most sensitive when dealing with large planets in tight orbits, which is why the first detections in main sequence stellar systems, beginning back...
A Scarcity of ‘Jupiters’ in Red Dwarf Systems
Gas giant worlds like Jupiter may be uncommon around red dwarf stars, as a number of recent studies have found. It would be useful to tighten up the data, however, because many of the papers on this matter have used stellar samples at the high end of the mass range of M-dwarfs. At the Center for Astrophysics | Harvard & Smithsonian (CfA), Emily Pass and colleagues have gone to work on the question by looking at lower-mass M-dwarfs and working with a lot of them, some 200 in their sample, all within 15 parsecs. The question is not purely academic, for some scientists suggest that the presence of a Jupiter-class planet – not uncommon around G-class stars like the Sun – is a factor in the development of life. Migrating inward from a formation in the first few hundred million years of the Solar System’s existence, Jupiter would have stirred up plenty of icy cometary bodies through gravitational interactions. Impacts from this infall into the inner system likely delivered a great deal...
Catching Up
Centauri Dreams began as a website back in August of 2004. I’m startled to realize, looking through the stats that my site’s software provides, that in the subsequent nineteen years, there have been 4,659 posts, along with close to 100,000 comments. The irony is that I started the site simply as a research venue for myself, thinking to keep up with the latest news by building a collection of articles and scientific papers. It took about a year before I even switched on the comments function. One of the benefits of publishing for such a length of time is perspective, as the interstellar research scene has grown and changed over the past two decades. But one thing I didn’t do is keep up with the software. Always focused on content, I’ve kept writing but have let too many generations of internal programming stay mired in older iterations. The dangers of this are obvious. A site with obsolete internals is all too open to hacking. And now, completely normal upgrades to some of the site’s...
SETI: Asking the Right Questions
Did Carl Sagan play a role in the famous Arecibo message transmitted toward the Hercules Cluster in 1974? I’ve always assumed so, given Sagan’s connection with Frank Drake, who was then at Cornell University, where Sagan spent most of his career. But opinion seems to vary. Artist/scientist Joe Davis, who now has affiliations with both MIT’s Laboratory of Molecular Structure and Harvard Medical School, noted in an email this morning that Sagan’s widow, Ann Druyan, supports the connection, but according to Davis, Drake himself denied Sagan’s role in the composition or transmission of the message. I mention all this because of Tuesday’s post on the simulated SETI signal being sent via ESO’s Mars ExoMars Trace Gas Orbiter, as a kind of work of art in its own right as well as a test case in building public involvement in the decoding of an unusual message. The idea of doing that irresistibly recalled Joe Davis because in 1988 Davis performed his own act of scientific art involving SETI,...
Links for IRG Interstellar Symposium in Montreal
The preliminary program for the Interstellar Research Group’s 8th Interstellar Symposium in Montreal is now available. For those of you heading to the event, I want to add that the early bird registration period for attending at a discount is May 31. Registration fees go up after that date. Registering at the conference hotel can be handled here. Registration before the 31st is recommended to get a room within the block reserved for IRG.
First Contact: A Global Simulation
Now and again scientists think of interesting ways to use our space missions in contexts for which they were not designed. I’m thinking, for example, of the ‘pale blue dot’ image snapped by Voyager 1 in 1990, an iconic view that forcibly speaks to the immensity of the universe and the smallness of the place we inhabit. Voyager’s cameras, we might recall, were added only after a debate among mission designers, some of whom argued that the mission could proceed without any cameras aboard. Fortunately, the camera advocates won, with results we’re all familiar with. Now we have a project out of The SETI Institute that would use a European Space Agency mission in a novel way, one that also challenges our thinking about our place in the cosmos. Daniela de Paulis, who serves as artist in residence at the institute, is working across numerous disciplines with researchers involved in SETI and astronautics to create A Sign in Space, the creation of an ‘extraterrestrial’ message. This is not a...
Remembering Jim Early (1943-2023)
I was saddened to learn of the recent death of James Early, author of a key paper on interstellar sail missions and a frequent attendee at IRG events (or TVIW, as the organization was known when I first met him). Jim passed away on April 28 in Saint George, UT at the age of 80, a well-liked figure in the interstellar community and a fine scientist. I wish I had known him better. I ran into him for the first time in a slightly awkward way, which Jim, ever the gentleman, quickly made light of. What happened was this. In 2012 I was researching damage that an interstellar sail mission might experience in the boost phase of its journey. Somewhere I had seen what I recall as a color image in a magazine (OMNI?) showing a battered, torn sail docked in what looked to be a repair facility at the end of an interstellar crossing. It raised the obvious question: If we did get a sail up to, say, 5% of the speed of light, wouldn’t even the tiniest particles along the way create significant damage...