“What is this fascination of yours with small red stars?” a friend asked in a recent lunch encounter, having seen something I wrote a few years back about TRAPPIST-1 in one of his annual delvings into the site. “They’re nothing like the Sun, to quote Shakespeare, and anyway, even if they have planets, they can’t support life. Right?”

Hmmm. The last question is about as open as a question can get. But my friend is on to something, at least in terms of the way most people think about exoplanets. My fascination with small red stars is precisely their difference from our familiar G-class star. An M-dwarf planet bearing life would be truly exotic, in an orbit lasting mere days rather than months (depending on the class of M-dwarf), and perhaps tidally locked, so inhabitants would see their star fixed in the sky. How science fictional can you get? And we certainly don’t have enough data to make the call on life around any of them.

Let’s talk a minute about how we classify small red stars, because this bears on the interesting project called SPECULOOS and its latest discovery that I want to get into today. SPECULOOS is of course an acronym (Search for Planets EClipsing ULtra-cOOl Stars), but in parts of northern Europe and especially Belgium it’s a word that conjures up the spiced shortcrust biscuits that are traditional on St. Nicholas’ Day (December 6). It’s always good to have something baking while you’re parsing exoplanet data.

The scientific parameters for SPECULOOS involve a transit search of the 40 parsecs nearest Earth to study the 1650 or so very low-mass stars and brown dwarfs found within this volume. Of note today is that category of stars known as ultracool dwarfs (UDS). Some 900, more or less, of these are found here in spectral types M6.5 to L2, the former being M-class dwarfs at the low end of the temperature range, the latter being even cooler than the M-dwarfs but at the high-end of the L range. We’re talking about stars with a mass between 0.07 and 0.1 solar masses and sizes not far from Jupiter’s.

I’ll send you to today’s paper for further details on the robotic, and international, network of observatories that make up SPECULOOS, and mention in passing that the remarkable TRAPPIST-1, with its seven Earth-sized transiting planets, was the network’s first discovery. A recent super-Earth has also been announced around the star LP 890-9, but the latest find, dubbed SPECULOOS-3b, orbiting an M6.5 dwarf some 16.75 parsecs out, merits special attention. This one has useful implications for our studies of exoplanet atmospheres and, as the authors point out, should be a prime target for the James Webb Space Telescope. The paper notes that “The planet’s high irradiation (16 times that of Earth) combined with the infrared luminosity and Jupiter-like size of its host star make it one of the most promising rocky exoplanets for detailed emission spectroscopy characterization.”

SPECULOOS-3 turns out to be the second-smallest main-sequence star found to host a transiting planet (it’s just a bit larger than TRAPPIST-1). The tiny host provides an excellent transit depth for detecting the Earth-sized planet. While its mass has not yet been determined, the likelihood is that it is a rocky world (all planets known to be Earth-sized in the NASA exoplanet archive have masses that imply a rocky composition). Making the definitive call will involve analyzing its composition, which would include Doppler studies and a relatively short observing program that the authors describe in the paper.

But another kind of investigation makes this find significant. Beyond radial velocity methods, we can put emission spectroscopy to work by measuring the combined light of star and planet just before the planet goes behind the star (secondary eclipse), and the star’s light just after it does so, using JWST’s Mid-InfraRed Low-Resolution Spectrometer (MIRI/LRS). The difference between the two yields the light emitted by the planet. Note the difference here from transmission spectroscopy, which examines the star’s light as it passes through the planet’s atmosphere. Emission spectroscopy is preferable here, as the paper explains:

…the interpretation of emission spectra is not dependent on the mass of the planet. Secondly, emission spectra provide the energy budget of the planet, which is essential to understand its atmosphere’s chemistry, its dynamics and can be used to constrain the planet’s albedo. Finally, in the absence of an atmosphere, emission spectroscopy instead directly accesses the planetary surface where its mineralogy can be studied, something impossible to achieve with transmission spectroscopy. For all these reasons, emission spectroscopy is a more reliable method to assess the presence of an atmosphere and study the nature of terrestrial planets around UDS. And… SPECULOOS-3 b is one of the smallest terrestrial planets that is within reach of the JWST in emission spectroscopy with MIRI/LRS.

Image: Emission spectroscopy, the secondary eclipse method, measures changes in the total infrared light from a star system as its planet transits behind the star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone. The spectrum is taken first with star and planet together, and then, as the planet disappears from view, a spectrum of just the star (second panel). By subtracting the star’s spectrum from the combined spectrum of the star plus the planet, it is possible to get the spectrum for just the planet (third panel). Credit: NASA/JPL-Caltech/R. Hurt (SSC/Caltech).

And here’s the transmission method:

Image: This is a transmission spectrum of an Earth-like exoplanet. The graph, based on a simulation, shows what starlight looks like as it passes through the atmosphere of an Earth-like exoplanet. As the exoplanet moves in front of the star, some of the starlight is absorbed by the gas in that exoplanet’s atmosphere and some is transmitted through it. Each element or molecule in the atmosphere’s gas absorbs light at a very specific pattern of wavelengths. This creates a spectrum with dips that show where the wavelengths of light are absorbed, as seen in the graph. Each dip is like a “signature” of that element or molecule. Credit: NASA, ESA, CSA, STScI, Joseph Olmsted (STScI).

As to my friend’s speculations about habitability, we can keep SPECULOOS-3b out of the mix, at least judging from its equilibrium temperature of 553 K, which works out to roughly 280°C or 535°F. Granted, we can speculate about extremophilic life or subsurface habitats, but there’s almost no point in doing that without reams of data that we do not yet possess. SPECULOOS-2b would be a better bet, being in the habitable zone of its M6-dwarf host, but there we have to bear in mind that the planet is a super-Earth. I think the question of life is a bit misplaced in the study of these dim stars. What we first have to find out is how accurately we can assess them with tools like JWST and its successors, and then begin cataloging the data. SPECULOOS-3b looks to be an early testing ground for what that future will bring.

The paper is Gillon et al., “Detection of an Earth-sized exoplanet orbiting the nearby ultracool dwarf star SPECULOOS-3,” for which the preprint is now available. I also want to give a nod to the TESS discovery of a planet transiting an M2.5 dwarf that is roughly Mars-sized. Quite a catch! The discovery paper of that one is Tey et al., “GJ 238 b: A 0.57 Earth Radius Planet Orbiting an M2.5 Dwarf Star at 15.2 pc,” Astronomical Journal Volume 167, Issue 6 (June, 2024), id.283, 13 pp. Abstract / Preprint.